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Abstract

This study aims to evaluate the effect of heart rate variability (HRV) indices on the

New York Heart Association (NYHA) classification of patients with congestive heart

failure and to test the effectiveness of different machine learning algorithms.

Twenty‐nine long‐term RR interval recordings from subjects (aged 34 to 79) with

congestive heart failure (NYHA classes I, II, and III) in MIT‐BIH Database were stud-

ied. We firstly removed the unreasonable RR intervals and segment the RR recordings

with a 300‐RR interval length window. Then the multiple HRV indexes were calcu-

lated for each RR segment. Support vector machine (SVM) and classification and

regression tree (CART) methods were then separately used to distinguish patients

with different NYHA classes based on the selected HRV indices. Receiver operating

characteristic curve analysis was finally employed as the evaluation indicator to com-

pare the performance of the two classifiers. The SVM classifier achieved accuracy,

sensitivity, and specificity of 84.0%, 71.2%, and 83.4%, respectively, whereas the

CART classifier achieved 81.4%, 66.5%, and 81.6%, respectively. The area under

the curve of receiver operating characteristic for the two classifiers was 86.4% and

84.7%, respectively. It is possible for accurately classifying the NYHA functional

classes I, II, and III when using the combination of HRV indices and machine learning

algorithms. The SVM classifier performed better in classification than the CART

classifier using the same HRV indices.
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cardiovascular disease, classification, congestive heart failure, electrocardiogram, heart rate

variability
1 | INTRODUCTION

Recent studies indicated that heart rate variability (HRV) plays an important role in diagnosis and treatment in cardiovascular disease such as con-

gestive heart failure (CHF; Malik, 1998). CHF is a disorder in which the heart cannot pump blood efficiently thus causing many organs to lack of

enough oxygen and nutrients (İşler & Kuntalp, 2007). CHF is a difficult condition in clinical treatment and has a high mortality rate (Cohn, 1996;

Nolan et al., 1998). The New York Heart Association (NYHA) introduced the NYHA functional classification system to help physicians in clinical

practice evaluate the effect of cardiac symptoms on a patient's daily activities (Bennett, Riegel, Bittner, & Nichols, 2002).
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HRV analysis is of great significance for the diagnosis of CHF (Sztajzel, 2004). Ponikowski et al. (1997) studied 102 consecutive patients with

moderate to severe CHF and concluded that depressed HRV could be an independent predictor for a poor prognosis in patients with CHF

(Ponikowski et al., 1997). Stein, Rich, Rottman, and Kleiger (1995) measured Holter‐derived HRV indexes in 17 stable patients with class II or

III CHF and concluded that time‐ and frequency‐domain indexes of HRV showed stability in CHF patients over time (Stein et al., 1995). Nolan

et al. (1998) recruited 433 outpatients with CHF (NYHA functional classes I to III) and found that the standard deviation (SDNN) of RR intervals

reduced in patients at high risk of death (Nolan et al., 1998). Hadase et al. (2004) monitored 54 consecutive CHF patients and reported that very

low‐frequency power is an independent risk predictor of clinical prognosis in patients with CHF (Hadase et al., 2004). Ho et al. (1997)

studied HRV in 2‐hr ambulatory electrocardiogram (ECG) recordings of 69 participants and put forward that non‐linear HRV indices may provide

complementary help to traditional HRV measures in treating CHF patients (Ho et al., 1997). Costa, Goldberger, and Peng (2002) proved that

multiscale entropy could separate healthy and CHF groups robustly against the influence of noise (Costa et al., 2002). Signorini, Ferrario,

Marchetti, and Marseglia (2006) successfully applied approximate entropy (ApEn) and sample entropy (SampEn) to differentiate between CHF

and normal subjects (Signorini et al., 2006). Graff, Graff, and Kaczkowska (2012) computed ApEn, SampEn, fuzzy entropy, and permutation

entropy on RR intervals of different lengths, finding that ApEn, SampEn, fuzzy entropy, and permutation entropy were significantly different

between patients with CHF and healthy individuals (Graff et al., 2012). D'addio et al. (1998) performed frequency‐domain and a Poincare

plot analysis on 22 CHF patients and confirmed that they might be useful in clinical setting (D'addio et al., 1998). Kamen and Tonkin (1995)

proposed a morphological classification scheme using Poincare plot pattern to display HRV data from a group of 23 patients with heart failure

and found a significant difference between patients with NYHA classes I and II compared with patients with NYHA classes III and IV (Kamen &

Tonkin, 1995).

At present, machine learning method can reorganize existing knowledge structures by using inductive, integrated rather than deductive

methods to acquire new knowledge or skills and continually improve their performance (Alpaydin, 2009). Supervised learning, an important

branch of machine learning, can be used in the diagnosis and prediction of cardiovascular diseases in clinical work. It has become a common

tool in detecting CHF. Pecchia, Melillo, and Bracale (2011) proposed a platform based on the classification and regression tree (CART)

method and reported a good performance in detecting heart failure (Pecchia, Melillo, & Bracale, 2011). Pecchia, Melillo, Sansone, and Bracale

(2011) studied 83 patients to investigate the discrimination power of short‐term HRV for discriminating normal subjects versus CHF patients.

The CART classifier they used achieved high sensitivity and specificity (Pecchia, Melillo, Sansone, & Bracale, 2011). Khaled, Owis, and

Mohamed (2006) employed time‐domain methods and Poincare plot to detect CHF using minimum‐distance classifier, Bayes minimum‐error

classifier, voting k‐nearest neighbour classifier, and Back propagation neural networks. Time‐domain indices were proved to be more capable

of discriminating the normal from CHF signals than Poincare plot features (Khaled et al., 2006). Mehrabi, Maghsoudloo, Arabalibeik,

Noormand, and Nozari (2009) differentiated between patients suffering from CHF and chronic obstructive pulmonary disease. They

employed multilayer perceptron and radial basis function neural networks and finally obtained fine classification (Mehrabi et al., 2009).

Masetic and Subasi (2016) compared five different classifiers (C4.5 decision tree, k‐nearest neighbour, support vector machine [SVM],

artificial neural networks, and random forest [RF] classifier) in detecting CHF. They performed their experiment on the ECG signals

acquired from BIDMC CHF and PTB diagnostic ECG databases and found that RF method was the most powerful classifier (Masetic &

Subasi, 2016).

Previous studies have focused primarily on discriminating CHF from normal cardiac function, whereas detailed analysis of the effect of HRV

indices on distinguishing the different degrees of CHF is lacking. The main goal of this study is to evaluate the effect of HRV indices on

the NYHA classification of patients with CHF. In this study, both the SVM and CART classifiers were used to test the classification effect

of time‐domain, frequency‐domain, and non‐linear HRV indices for distinguishing different NYHA levels of CHF (NYHA classes I, II, and III).

Receiver operating characteristic (ROC) curve analysis was introduced to compare the performance of the two classifiers. The remainder of

this paper was organized as follows. Our method, including data preprocessing and algorithms employed to implement a classifier, was

presented in Section 2. Corresponding results were shown in Section 3. We gave a discussion in Section 4.
2 | METHODS
2.1 | Data

All data used here were from the RR Interval Databases from http://www.physionet.org (Goldberger et al., 2000). The RR Interval Database

included 29 long‐term RR interval recordings of subjects (aged 34 to 79) with CHF, 4 labelled as NYHA functional class I, 8 labelled as class II,

and 17 labelled as class III. The sample frequency of the raw ECG signal is 128 Hz. We used the QRS annotations to obtain the RR interval time

series, and these annotations were from automated analysis with manual review and correction.

http://www.physionet.org


FIGURE 1 Block diagram of the proposed
analytical procedure. CART: classification and
regression tree; CHF: congestive heart failure;
HRV: heart rate variability; ROC: receiver
operating characteristic; SVM: support vector
machine
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2.2 | Method description

Figure 1 shows the block diagram of the analytical procedure used in this paper. There are five major steps in this procedure: Step 1, preprocessing

for each RR interval recording; Step 2, segmenting for each RR interval recording; Step 3, calculating HRV indices for each RR segment; Step 4,

selection of HRV indices; and Step 5, machine learning and classification methods.

In Step 1, to avoid the deviations brought by artefacts, the RR intervals greater than 2 s are removed from original RR intervals (C. Liu & Gao,

2017). Then the RR intervals that present above three standard deviations (3SD) around the mean are identified and removed (Berntson & Stowell,

1998). Table 1 shows the number of RR intervals in original CHF groups (NYHA classes I, II, and III) and the numbers of RR intervals after the pre-

processing operations mentioned above. The percentages of the reserved RR intervals after the removal are 99.3%, 97.1%, and 97.5% for NYHA

classes I, II, and III groups, respectively.

In Step 2, a 300‐RR interval window is utilized to segment the long‐term RR intervals and form the RR segments. Then we refuse RR intervals

whose confidence intervals are below 99% for each RR segment to further reduce interferes brought by artefacts and ectopic beats (Christou &

Dinov, 2011).

In Step 3, we calculated the common HRV indices for each RR segment, including time‐domain indices, frequency‐domain indices, and non‐

linear indices. The detailed descriptions of these indices are shown in Section 2.3.

In Step 4, we use RF algorithm against overfitting to perform importance ranking and selection of HRV indices. The final indices we chose were

the subset of features corresponding to the smallest out‐of‐bag (OOB) error (Breiman, 2001; Genuer, Poggi, & Tuleau‐Malot, 2010). We set the
TABLE 1 Statistical profile for the 29 CHF RR Interval Databases

Variable

NYHA functional classification

Class I Class II Class III

NRR interval recordings chf213, chf217

chf218, chf221

chf211, chf212, chf214

chf215, chf216, chf220

chf224, chf226

chf201–chf210, chf219
chf222, chf223, chf225

chf227, chf228, chf229

No. of RR interval recordings 4 8 17

No. of RR intervals 428,723 955,867 1,905,752

No. of RR intervals after removing greater than 2 s 427,761 954,657 1,902,029

No. of RR intervals after removing abnormal heartbeats 425,668 927,798 1,857,333

No. of RR segments when setting N = 300 1,416 3,088 6,181

Note. CHF: congestive heart failure; NYHA: New York Heart Association.
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number of random variables dividing the node mtry =
ffiffiffiffi

m
p

, where m is the number of HRV indices of all the segments, according to Liaw and Wie-

ner (2002). The number of trees in the forest ntree is the one that yields to the smallest error rate. That is to say, the value of ntree we decided

should guarantee the convergence of RF algorithm (Archer & Kimes, 2008). The selected HRV indices will be used as input for classification.

In Step 5, we use the statistical methods shown in Section 2.5 to compare the HRV results among the NYHA classes I, II, and III groups. Then

we used an SVM‐based classifier and a CART‐based classifier separately to classify the NYHA classes I, II, and III groups. ROC curve analysis was

used for algorithm evaluation. The detailed descriptions of machine learning and classification methods were summarized in Section 2.4.

2.3 | HRV indices

2.3.1 | Time‐domain indices

Themean value (MEAN) of RR intervals, the SDNN of RR intervals, the square root of mean squared differences of successive RR intervals (RMSSD),

and the proportion derived by dividing NN50 (the number of interval differences of successive NN intervals greater than 50 ms) by the total number

of NN intervals (PNN50)were used as time‐domain indices (Brennan, Palaniswami, & Kamen, 2001; Cammet al., 1996). SDNNand RMSSDmeasured

the overall regulation of the autonomic nervous system and vagus nerve on heart rate, respectively. PNN50 showed the tension of the vagus nerve.

2.3.2 | Frequency‐domain indices

The Burg's method is employed to get the parameter of the AR model, which is used for the analysis of frequency domain (Acharya, Joseph,

Kannathal, Min, & Suri, 2007). Using Burg's method with an order of 16, we could produce the spectrum of HRV frequency spectrum that was

integrated across the low‐frequency power (0.04 to 0.15 Hz) and high‐frequency power (0.15 to 0.40 Hz) spectra (Brennan et al., 2001; Camm

et al., 1996). The representation of LF (low‐frequency power) and HF (high‐frequency power) in normalized units reflects the controlled behaviour

of sympathetic and parasympathetic, respectively, whereas their ratio (LF/HF) emphasized the balanced behaviour of the two branches of the

autonomic nervous system (Malik et al., 1996). Here, LFn = LF/(HF + LF), HFn = HF/(HF + LF), and their ratio (LF/HF) were used as the

frequency‐domain indices.

2.3.3 | Non‐linear indices

We introduce SampEn and fuzzy measure entropy (FuzzyMEn) as non‐linear indices. The value of SampEn reflects the complexity of the sequence

(Richman & Moorman, 2000). Due to the improved accuracy of SampEn statistics, they can be used in the study of experimental clinical cardio-

vascular and other biological time series. Combining both local similarity and global similarity in time series, FuzzyMEn also has a good discrimi-

nation for time series with inherent complexity. Following the parameter settings in Zhao et al. (2015), the settings for SampEn were

embedding dimension m = 2 and tolerance threshold r = 0.1; the parameter setting for FuzzyMEn is embedding dimension m = 2.

Figure 2 shows the example outputs of the aforementioned HRV indices. Similar results among the three groups could be observed.

2.4 | Machine learning and classification methods

2.4.1 | SVM‐based classifier

For binary classification problem, the standard SVM can be used (Blanz et al., 1996). For multi‐class classification problem, one method is to

decompose standard SVMs to several binary classification problems; therefore, a standard SVM can be used (Franc & Hlavác, 2002). Here,

one‐against‐all decomposition is applied based on the libsvm software package to learn the SVM models (Chang & Lin, 2011). A 10‐fold

crossvalidation is performed to the CHF subjects, that is, RR segments of all the patients' recordings were randomly divided to 10 folds. We check

onefold at a time. All subjects that are not in the current fold formed the training set to train the SVM. The test set formed by subjects in the

current fold is used to test the result of NYHA classes I, II, and III classification. It is a total patient‐independent test. The parameter settings of

libsvm are listed as follows. Radial basis function is used as kernel function according to Keerthi and Lin (2003) and Lin and Lin (2003). A “grid‐

search” on cost parameter C and gamma parameter γ using crossvalidation is used (Hsu, Chang, & Lin, 2003). We tried various pairs of (C, γ) values

and found that the best accuracy reached when γ = 0.000122703125 and C = 2. Sensitivity (Se), specificity (Sp), and accuracy (Acc) were calculated

to evaluate the SVM model. Sensitivity, specificity, and accuracy were defined as

Se ¼ TP= TPþ FNð Þ; (1)

Sp ¼ TN= TNþ FPð Þ; (2)



FIGURE 2 Examples of HRV results from NYHA functional class III patient (a1–a3), class II patient (b1–b3), and class I patient (c1–c3). The
figures (a1–a3) were the 29th, the 19th, and the 6th segment from the recordings of subject chf29, respectively. The waveforms (b1–b3) were
the 4th, the 11th, and the 14th segment from the patient chf26's recordings, respectively. The waveforms (c1–c3) were the 13th, the 14th, and
the 15th segment from the subject chf26's recordings, separately
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Acc ¼ TPþ TNð Þ= TPþ FNþ FPþ TNð Þ; (3)

where for NYHA functional class I group, TP is the number of the patients with class I that were correctly classified as the class I group, TN is the

number of other patients that were classified as class II or III groups, FP is the number of other patients that were falsely classified as the class I

group, and FN is the number of the patients with class I that were falsely classified as class II or III groups. For class II and III groups, the meanings

of these notations can be deduced by analogy.

2.4.2 | CART‐based classifier

CART is a classification method that uses historical statistics to construct decision trees. The segregation of different values of classification var-

iables through a decision tree composed of progressive binary splits is often involved in such algorithm (Fonarow et al., 2005). With HRV indices

values as the sample dataset and a 10‐fold validation performed to the subjects, the training process here is the same as Section 2.4.1.

Gini index was used as the criterion for selecting the best splitting attribute. For any subset Sq of training dataset, it is given by Rutkowski,

Jaworski, Pietruczuk, and Duda (2014).

Gini Sqð Þ ¼ 1 − ∑K
k¼1pk;q

2; (4)

where K is the number of category (here, K = 3) and pk, q is the probability that category k appears in Sq. The Gini index is calculated separately for

the combination of the binary divisions, and the combination of the minimized Gini index is automatically selected. To evaluate performance, sen-

sitivity, specificity, and accuracy, as defined in Equations 1–3, respectively, were still used.
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2.4.3 | ROC curve analysis

ROC is one standard tool that is used to analyse and compare classifiers in the condition of the datasets with unbalanced classes or unknown

cost of misclassification (Clearwater & Stern, 1991). In this paper, we employ the common index of area under the curve (AUC) to evaluate

the classification performances of SVM‐based and CART‐based algorithms and determine the better choice for distinguishing the CHF patients

of different NYHA classes.
2.5 | Statistical analysis

We employ Kolmogorov–Smirnov test and Q–Q plot to test the normal distributions of all HRV indices. If passed, the group t test was used to

test the statistical difference among the NYHA classes I, II, and III groups. Otherwise, non‐parametric test was used instead. All statistical

results were considered statistically significant if p values are less than 0.05. We perform all our statistical analysis on the SPSS software (Ver.

19, IBM, USA).
3 | RESULTS
3.1 | Statistical differences of HRV indices among the three groups

We first calculated the HRV indices for all the segments. All HRV indices of CHF patients contended normal distribution according to the result of

the Kolmogorov–Smirnov test. Then we got the mean ± standard error of the mean values for NYHA functional classes I, II, and III groups and the

whole CHF patients group. Table 2 shows the mean ± standard error of the mean values and the lower and upper bounds of normalized 95% con-

fidence interval of mean group values for the three groups separately and the whole CHF subjects. Table 3 shows the statistical results for the

three groups.
3.2 | Selection of HRV indices

3.2.1 | Selection of ntree

We gradually increased the number of trees in forest from 0 to 1,000 and calculated the OOB error of all HRV indicators. Figure 3 illustrated the

change of OOB error of RF model with ntree growing. As is shown in the figure, OOB error keeps stable at 23% when ntree is equal to 200 or

more. Thus, ntree = 200 was chosen for the RF method.
3.2.2 | Importance ranking and selection of HRV indices

With RF algorithm, we got the ranking list of the nine HRV indices and sorted them from high to low according to the importance

level. Figure 4 shows the importance ranking of these indices. The importance level values of MEAN, RMSSD, SDNN, PNN50,

LF/(LF + HF), HF/(LF + HF), LF/HF, SampEn, and FuzzyMEn are 0.1950, 0.1593, 0.1316, 0.0849, 0.0693, 0.0697, 0.0712, 0.1196,

and 0.0994, respectively. The subset of features corresponding to the smallest OOB error was made up of all the time‐domain and non‐linear

indices, as well as the frequency‐domain LF/HF. Therefore, the HRV indices LF/(LF + HF) and HF/(LF + HF) were refused in subsequent

studies.
3.3 | Classification results using SVM classifier and CART classifier

Table 4 shows the classification results of 29 CHF subjects with three different NYHA classes using 10‐fold crossvalidation‐based SVM classifier.

The average Se, Sp, and Acc of class I are 69.6%, 97.4%, and 92.9%, respectively; those of class II are 52.6%, 93.2%, and 80.9%, respectively; and

those of class III are 91.3%, 59.7%, and 78.1%, respectively, resulting in an average Acc of 84.0% for all classes.
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Table 5 shows the classification results of 29 CHF subjects with three different NYHA classes using 10‐fold crossvalidation‐based CART clas-

sifier. The average Se, Sp, and Acc of class I are 56.5%, 96.7%, and 90.2%, respectively; those of class II are 55.4%, 89.8%, and 78.5%, respectively;

and those of class III are 87.6%, 58.2%, and 75.5%, respectively, resulting in an average Acc of 81.4% for all classes.
3.4 | Comparison of the two classifiers with ROC curve analysis

Figure 5 shows ROC curve plots with AUC values for the results of 10‐fold crossvalidation‐based SVM and CART classifiers for classifying NYHA

functional classes I, II, and III groups. The SVM classifier achieved AUC values of 95.2%, 84.5%, and 79.5% for classifying classes I, II, and III,

respectively, whereas the AUC values of CART classifier were 89.4%, 79.4%, and 85.2%, respectively. It is clear that the area under the ROC curve

of the SVM classifier is larger than that of CART classifier in each figure.
4 | DISCUSSIONS

Decreased HRV indices were regarded as independent risk factors for mortality in patients with advanced CHF (Aronson, Mittleman, & Burger,

2004; Ponikowski et al., 1997; Stein, Bosner, Kleiger, & Conger, 1994). Lee, Noh, and Ryu (2007) evaluated several classifiers with various
TABLE 2 Statistical results of HRV indices for the three NYHA functional class groups

NYHA
class HRV indices Mean ± SEM

95% CI of mean group values

Lower Upper

Class I MEAN (ms) 762.05 ± 4.00 754.36 769.57

SDNN (ms) 76.09 ± 1.80 72.71 79.71

RMSSD (ms) 70.76 ± 1.32 68.30 73.50

PNN50 16.90 ± 0.44 16.03 17.75

LF/LH 1.64 ± 0.05 1.55 1.75

LFn 0.49 ± 0.01 0.48 0.50

HFn 0.51 ± 0.01 0.50 0.52

SampEN 1.63 ± 0.01 1.61 1.66

FuzzyMEn 0.97 ± 0.01 0.95 1.00

Class II MEAN (ms) 637.97 ± 1.59 634.70 641.15

SDNN (ms) 18.82 ± 0.26 18.32 19.34

RMSSD (ms) 24.25 ± 0.31 23.65 24.82

PNN50 3.53 ± 0.14 3.27 3.80

LF/LH 1.82 ± 0.03 1.75 1.88

LFn 0.52 ± 0.00 0.52 0.53

HFn 0.48 ± 0.00 0.47 0.48

SampEN 1.44 ± 0.01 1.42 1.45

FuzzyMEn 1.23 ± 0.01 1.21 1.25

Class III MEAN (ms) 687.92 ± 1.31 685.47 690.54

SDNN (ms) 24.41 ± 0.36 23.69 25.14

RMSSD (ms) 26.97 ± 0.26 26.45 27.47

PNN50 4.76 ± 0.13 4.50 5.02

LF/LH 1.20 ± 0.02 1.16 1.23

LFn 0.45 ± 0.00 0.44 0.45

HFn 0.55 ± 0.00 0.55 0.56

SampEN 1.52 ± 0.01 1.51 1.53

FuzzyMEn 1.33 ± 0.01 1.31 1.34

All MEAN (ms) 683.30 ± 1.08 681.34 685.40

SDNN (ms) 29.64 ± 0.36 28.95 30.38

RMSSD (ms) 31.98 ± 0.28 31.44 32.53

PNN50 6.01 ± 0.11 5.79 6.23

LF/LH 1.43 ± 0.02 1.40 1.46

LFn 0.47 ± 0.00 0.47 0.48

HFn 0.53 ± 0.00 0.52 0.53

SampEN 1.51 ± 0.00 1.50 1.52

FuzzyMEn 1.25 ± 0.01 1.24 1.26

Note. CI: confidence interval; HRV: heart rate variability; NYHA: New York Heart Association; SEM: standard error of the mean.
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experiments on linear and non‐linear features of HRV indices and found that SVM performed better than other classifiers such as CART and

C4.5 (Lee et al., 2007). İşler and Kuntalp (2007) performed a k‐nearest‐neighbour classifier to evaluate the performance of feature sets of HRV

indices in distinguish CHF group from the normal subjects and reported that the best set was made up of MEAN, RMSSD, VLI, LF/HF, very

low frequency (0–0.04 Hz), LFn, and HFn. The classifier obtained the sensitivity and specificity value of 100% and 94.74% (İşler and Kuntalp,

2007). Pecchia, Melillo, and Bracale (2011) distinguished normal subjects versus CHF patients with CART method based on short‐term HRV

indices, included RMSSD, total power, HFn, and LF/HF. The classifier obtained sensitivity and specificity values of 79.3% and 100%,

respectively (Pecchia, Melillo, Sansone, & Bracale, 2011). Melillo, De Luca, Bracale, and Pecchia (2013) achieved a sensitivity and a specificity

rate of 93.3% and 63.6%, respectively, in identifying higher risk patients with CHF (NYHA functional classes III and IV) using CART method

based on standard long‐term HRV measures (Melillo et al., 2013). G. Liu et al. (2014) achieved the best performance with the CHF classifica-

tion accuracy, sensitivity, and specificity of 100%, 100%, and 100%, respectively, based on SVM algorithm and two HRV indices SUM_TD and

SUM_FD (G. Liu et al., 2014). However, these results are not patient independent, with the risk of overfitting.

NYHA functional classification has been proved to be a risk factor for mortality in CHF patients (Senni et al., 1998). All HRV indices used in

this study showed statistical differences between any two of the three NYHA functional class groups. The difference among the three groups

could be explained by the decreased parasympathetic activity to the heart and the vagal outflow of the heart (Casolo, Balli, Taddei, Amuhasi, &

Gori, 1989). Both the SVM‐based and CART‐based classifiers obtained high accuracy and performed well in ROC curve analysis when classi-

fying the three groups. The average value of Acc of the two classifiers was 84.0% and 81.4%, respectively. The 10‐fold crossvalidation‐based

SVM and CART obtained average AUC of 86.4% and 84.7% separately. However, the sensitivity of the two classifiers was not that high when

detecting classes I and II (<60%) due to the slight differences in clinical practice of these two classes. However, SVM classifier performs more

powerful in discriminating classes I, II, and III groups than CART classifier when using the same HRV indices.

In short, this study shows that it is possible for accurately classifying the NYHA functional classes I, II, and III when using the combination of

HRV indices and machine learning algorithms. The SVM classifier performed better in classification than the CART classifier using the same

HRV indices.
TABLE 3 Statistical significances of any two of the three New York Heart Association functional class groups

HRV indices (A) class (B) class p value

MEAN (ms) Class I Class II 0.00

Class I Class III 0.00

Class II Class III 0.00

RMSSD (ms) Class I Class II 0.00

Class I Class III 0.00

Class II Class III 0.00

SDNN (ms) Class I Class II 0.00

Class I Class III 0.00

Class II Class III 2.79 × 10−11

PNN50 Class I Class II 0.00

Class I Class III 0.00

Class II Class III 1.40 × 10−10

LF/HF Class I Class II 0.0146

Class I Class III 0.00

Class II Class III 0.00

LFn Class I Class II 1.17 × 10−7

Class I Class III 2.15 × 10−9

Class II Class III 0.00

HFn Class I Class II 1.17 × 10−7

Class I Class III 2.15 × 10−9

Class II Class III 0.00

SampEn Class I Class II 0.00

Class I Class III 6.66 × 10−16

Class II Class III 0.00

FuzzyMEn Class I Class II 0.00

Class I Class III 0.00

Class II Class III 2.00 × 10−15

Note. HRV: heart rate variability.



TABLE 4 Results of 10‐fold crossvalidation‐based support vector machine classifier for classifying New York Heart Association classes I, II, and
III groups

Fold

Classification results
Class I Class II Class III Average Acc

Se (%) Sp (%) Acc (%) Se (%) Sp (%) Acc (%) Se (%) Sp (%) Acc (%) Acc (%)

1 68.4 97.3 92.9 48.7 92.8 79.6 91.4 57.0 77.6 83.4

2 76.1 96.6 94.2 52.1 93.9 81.5 91.2 60.3 79.2 85.0

3 64.7 97.6 92.5 54.2 92.6 80.8 90.2 58.6 77.1 83.5

4 79.4 96.9 94.2 57.6 93.1 82.7 90.3 66.4 80.7 85.9

5 71.4 97.5 93.4 52.2 95.2 82.0 93.5 60.0 79.4 85.0

6 58.8 96.9 89.5 48.8 92.3 79.2 90.3 54.4 74.8 81.2

7 71.7 98.4 94.1 56.6 93.7 82.5 92.6 63.1 80.2 85.6

8 64.7 97.0 92.0 56.4 94.2 82.3 92.0 60.8 78.9 84.4

9 70.9 97.9 93.2 48.6 90.8 77.9 89.0 57.4 75.5 82.2

10 69.5 97.9 93.1 50.5 93.3 80.4 92.0 58.6 77.9 83.8

Mean 69.6 97.4 92.9 52.6 93.2 80.9 91.3 59.7 78.1 84.0

SD 5.6 0.5 1.3 3.3 1.1 1.5 1.3 3.2 1.8 1.4

FIGURE 4 Importance ranking of heart rate variability indices using random forest algorithm. The value of importance explains the degree of
declining in the accuracy of data outside the bag when random noise is added. In theory, the sum of the importance value of all indicators is 1

FIGURE 3 Change of out‐of‐bag (OOB) error of random forest model with ntree growing from 0 to 1,000. The value of OOB error declines as
ntree increases
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FIGURE 5 Results of receiver operating characteristic (ROC) curve analysis for evaluating the performance of the support vector machine (SVM)
classifier and the classification and regression tree (CART) classifier for discriminating congestive heart failure patients with New York Heart
Association functional classes I (a), II (b), and III (c)

TABLE 5 Results of 10‐fold crossvalidation‐based classification and regression tree classifier for classifying New York Heart Association classes
I, II, and III groups

Fold

Classification results

Class I Class II Class III Average Acc

Se (%) Sp (%) Acc (%) Se (%) Sp (%) Acc (%) Se (%) Sp (%) Acc (%) Acc (%)

1 60.6 97.3 91.9 53.8 88.5 78.1 86.8 58.2 75.5 81.8

2 59.7 95.7 90.2 51.2 91.8 79.0 89.3 56.5 75.8 81.7

3 51.8 97.7 90.3 55.0 88.8 72.3 87.2 55.9 74.3 79.0

4 52.6 97.9 91.1 57.9 89.5 80.9 88.1 58.2 77.0 83.0

5 53.7 97.8 89.7 58.0 91.9 80.8 89.8 58.8 76.3 82.3

6 59.0 96.1 90.3 55.9 91.7 80.4 88.3 58.7 76.0 82.2

7 58.4 96.0 89.4 53.3 90.8 78.3 87.8 57.1 74.1 80.6

8 54.4 96.3 89.1 55.2 87.8 77.0 85.6 57.5 73.3 79.8

9 59.1 96.5 89.5 53.7 87.6 77.9 85.8 59.1 74.9 80.8

10 55.8 96.0 90.2 60.1 89.2 80.7 87.0 62.3 77.6 82.8

Mean 56.5 96.7 90.2 55.4 89.8 78.5 87.6 58.2 75.5 81.4

SD 3.1 0.8 0.8 2.5 1.9 2.5 1.3 1.7 1.3 1.3
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