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R-peak detection for dynamic electrocardiogram (ECG) signal is still a challenge due to the poor signal quality,
which leads to inefficient recognition of the existing R-peak detection technologies. Collected in clinical envi-
ronment, ECG signals from current widely-used open-access ECG databases are basically provided with high
quality. Many methods can achieve high recognition rate on these databases but fail to work properly if the signal
quality reduces. This study presents an open-access ECG database comprises of challenging QRS segments.
The database is used for the 2nd China Physiological Signal Challenge (CPSC 2019), where participants are
expected to identify QRS locations and then estimate HR from these episodes. All the approved algorithms are
evaluated by scoring standards and regulations defined in terms of both R-peak detection and HR estimation,
with Pan & Tompkin (P&T) algorithm as a benchmark.
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1. INTRODUCTION
Electrocardiogram (ECG) signal plays an important role in non-

invasively monitoring and clinical diagnosis for cardiovascular

disease (CVD) [1]. Detection of QRS complex is an essential step

for ECG signal processing, and can benefit the following heart

rate (HR) calculation and abnormal situation analysis. Since it

reflects the electrical activity within the heart during the ventricu-

lar contraction, the time of its occurrence as well as its shape pro-

vide much information about the current state of the heart [2, 3].

QRS detection generally involves linear and non-linear transfor-

mations of raw ECG to enhance the QRS complexes, and can

be achieved by techniques that focus on the ECG amplitude, its

first and second derivatives [4, 5], or by using digital filters [6].

HR is a sensitive indicator of the cardiovascular system load

and estimation of instantaneous HR is one of the most important

problem in physiological measurement. HR is usually estimated

from the detected QRS locations, but sometime it can be directly

estimated from the ECG waveforms without any feature detection

(like QRS complex, P wave) [7, 8].

Although QRS detection methods have been severely tracked

throughout the last several decades and many sophisticated meth-

ods have been proposed for HR estimation [6, 9], accurate QRS

∗Author to whom correspondence should be addressed.

location and HR estimation are still challenging in noisy sig-

nal episode or abnormal rhythm waveforms, especially when the

ECG recordings are from dynamic ECG Holter or wearable ECG

devices [6, 10–13]. It is true that many of the developed QRS

detection algorithms can achieve high accuracy (over 99% in sen-

sitivity and positive predictivity) when tested over the standard

ECG databases such as MIT-BIH Arrhythmia Database or AHA

Database [14, 15]. However, these algorithms may fail when used

in the dynamic environment that includes severe noises [16].

A recent study confirmed that none of the common QRS algo-

rithms can obtain over 80% detection accuracy when tested on

the dynamic noisy ECG database [17, 18]. Moreover, even tested

on some open-access dynamic ECGs, ECG episodes with good

signal quality account for a majority and thus the evaluation

results usually hide the failure of QRS detectors in case of noisy

or pathological signals. In addition, ECG morphology has signifi-

cant individual variability in patients of various arrhythmias, such

as premature arrhythmia, ventricular arrhythmia, and conduction

arrhythmia [19]. So QRS detection should be immune to physi-

ological variability of ECG waveforms and HR rhythms [20].

Well-thought-out databases can essentially improve the

progress of related technologies, and the usefulness has been

verified by some widely used open-access databases, such as

the developed ECG database [21], heart sound database [22],
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electroencephalogram (EEG) database [23], 1st CPSC [24] etc.

Thus, a well-designed dynamic ECG database that can ade-

quately test the performance of QRS detection and HR esti-

mation algorithms is highly needed. This study presents a

new designed ECG database containing only challenging ECG

episodes for QRS detection and HR estimation. The challenging

situations incudes pathological arrythmias, extreme sinus tachy-

cardia or sinus bradycardia, poor signal quality due to the arti-

facts and noises, waveform morphological variability, etc., aiming

to encourage participants to develop more efficient and robust

algorithms for QRS detection and HR estimation. In addition,

it is worth to note that, although HR can be calculated from

the detection results of QRS complexes, it can be still estimated

without QRS detection step [7, 8].

2. CHALLENGE DATA
Training data consists of 2,000 single-lead ECG recordings col-

lected from patients with CVD. Each of the recording last for

10 s. Test set contains the similar ECG recordings with the same

time lengths, but it is unavailable to public and will remain pri-

vate for the purpose of scoring for the duration of the Challenge

and for some period afterwards. ECG recordings were obtained

from multiple sources, although in all cases they are presented as

500 Hz sample rate here. All recordings were provided in MAT-

LAB format (each including two .mat file: one is ECG data and

another one is the corresponding QRS annotation file). Pan &

Tompkins (P&T) algorithm for QRS detection [20, 25] is pro-

vided as a benchmark for algorithm comparison.

All the 10-s ECG episodes are challenging for QRS detection,

as well as for HR estimation. In general, there are several signal

types of the challenging ECG episodes. We summarize the signal

types as follows.

2.1. Type A: Pathological Arrythmias

The abnormal heart beats, generated by the irregularity in the ori-

gin/conduction of the cardiac electrical activity, mainly include

the following: left bundle branch block (LBBB), right bundle

branch block (RBBB), premature ventricular contractions (PVC)

(see Fig. 1). We did not indicate the ECG episodes from a special

ECG channel. These episodes can be from any of the 12 ECG

leads. Thus, the morphology of the ECG episodes varies. Tradi-

tional threshold algorithms (usually amplitude threshold) exhibit

poor performance when deal with the small amplitude of QRS

complexes caused by abnormal heart beats.

When bundle branch block occurs, one branch of His-bundle

delays conducting the electrical impulse and ventricle is activated

by the myocardial propagation of electrical activity from other

ventricles. Thus, the affected ventricle is depolarized erratically

and slowly through an alternative pathway. This delay is shown in

ECG with a widening of QRS complex (duration >120 ms) and

a change of its pattern, which varies depending on the affected

branch, acted as RBBB or LBBB. Specific diagnostic criteria of

RBBB and LBBB given by the ACC/ESC consensus document

are summarized in Table I [26, 27].

PVCs are conducted by the specialized conduction system and

therefore are broad. The QRS width is at least 120 ms, but often

very broad around 160–200 ms. PVCs have many types and

can be: monomorphic (QRS complexes with similar morpholo-

gies), multiformic (QRS complexes with different morphologies),

Fig. 1. From top to bottom: LBBB (data00872), RBBB (data00295), PVC
(data00480). Red circles denote the reference QRS locations.

bigeminy (every sinus beat followed by a PVC), or trigemini

(every second sinus beat followed by a PVC).

2.2. Type B: Sinus Tachycardia and Sinus Bradycardia

Sinus tachycardia and sinus bradycardia are sinus rhythms with

a rate higher than 100 bpm or less than 60 bpm. In sinus tachy-

cardia the sinus node fires between 100 and 180 impulses per

minute. Maximal HR decreases with age from around 200 bpm

to 140 bpm. In sinus bradycardia the sinus node fires at a slow

(<60 bpm) rate. More severely, Sino-atrial exit block or sinus

arrest may occur during sinus bradycardia and cause a long

break. All these sinus tachycardia and sinus bradycardia put a

challenge to the fixed threshold algorithms. Figure 2 shows two

examples of sinus tachycardia and sinus bradycardia.

2.3. Type C: Poor Signal Quality Due to

Artifact and Noise

Dynamic and wearable ECGs are easily contaminated by arti-

facts and noises. Worse yet, often the frequency content of noises

overlaps with the frequency band of signal interest (thus limit-

ing denoising approaches in the frequency domain) or has mor-

phology similar to the QRS complex (thus limiting denoising

approaches in the time domain) [28]. The typical artifacts and

noises (Fig. 3) are from:

(1) Electrode contact noise: Loss of contact between the elec-

trode and skin manifesting as sharp changes with saturation on

the ECGs (usually due to an electrode being nearly or completely

pulled off).

Table I. Diagnostic criteria of RBBB and LBBB.

RBBB LBBB

QRS duration greater than 120 ms QRS duration greater than 120 ms

rsR’ “bunny ear” pattern in the
anterior precordial leads (leads
V1–V3)

Monomorphic R wave in leads I,
V5 and V6 with no Q waves

Slurred S waves in leads I, aVL
and frequently V5 and V6

ST and T wave opposite to the
major deflection of the QRS
complex
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Fig. 2. Example of bradycardia (A: data00134), tachycardia
(B: data00470). Red circles denote the reference QRS locations.

(2) Electrode movement artifacts: Electrode movement away

from the contact area on the skin, leading to variations in the

impedance between the electrode and skin, which will cause

potential variations in the ECG and usually manifest themselves

as rapid (but continuous) baseline jumps or complete saturation.

(3) Device noise: Noises generated by the hardware of the

device.

Unfortunately, ECG is often contaminated by noise in simi-

lar morphologies caused the interest signal nearly invisible by

human eyes. To remove all noises completely is impossible, so

it is important to quantify the nature of noises in a particular

dataset and choose an appropriate algorithm.

2.4. Annotation

All raw ECG recordings (12 leads, 9364 normal or abnormal

recordings) were beat-by-beat annotated first by the P&T QRS

detector and then manually hand-corrected by visual inspection.

The algorithm generally places beat annotations in the middle of

the QRS complex (as determined from all 12 leads); the locations

have not been manually corrected, however, and there may be

occasional misaligned annotations as a result. Poor quality chan-

nels (as judged by the researcher performing the hand correction)

of 12-lead recordings were picked and put into different types

datasets as outlined above. Subsequently, manual review was per-

formed by a single individual to correct any obvious mistake.

Fig. 3. Examples of poor signal quality ECG episodes due to artifacts
(A: data00079) and noise (B: data00573). Red circles denote the reference
QRS locations.

3. EVALUATION METHOD
The Challenge is comprised of two events related to scoring:

QRS location and HR estimation. Only test set will be used

for event scoring. QRS annotations in the training and test sets

are labeled and approved by cardiologists and trained volunteers.

These reference annotations have been processed to derive the

reference RR interval time series (the intervals between succes-

sive QRS annotations). HR is further derived from the RR inter-

val with a 4-s time window ranging from 5.5 s to 9.5 s in each

of 10-s ECG segment. Pan & Tompkin algorithm for QRS detec-

tion is used as a benchmark method, and it outputs a score of

0.3345 for QRS detection task and 0.5299 for HR estimation task

respectively.

3.1. Event 1: QRS Detection

In this event, the goal is to produce a set of QRS annotations that

can matches the reference QRS annotations. For each reference

QRS annotation, a matched QRS annotation should lie in 75 ms

duration centered by the reference QRS annotation [29]. Noted

that the reference QRS annotations appear in the first and last

half seconds are omitted. As shows in Figure 4, detected QRS

must be within 75 ms from the reference ones. For each 10-s

ECG segment, the scoring rules are:

• complete matching scores one point;

• a false positive (FP) detection scores 0.7 points;

• a false negative (FN) detection scores 0.3 points, since from a

clinical perspective, missed diagnosis is more serious than mis-

diagnosis, thus we penalize FN detection here;

• other situations score 0.

QRSscore =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 FP+FN= 0

0�7 FP= 1 and FN= 0

0�3 FP= 0 and FN= 1

0 others

The final score for Event 1 (QRSacc) can be calculated as:

QRSacc =
∑

QRSscore

number of test recordings

3.2. Event 2: HR Estimation

In this event, the goal is to produce a real-time estimate for HR

for a 4-s ECG episode, i.e., ECG signals from 5.5 s to 9.5 s.

Figure 5 demonstrates the evaluation method for Event 2, i.e.,

how HRscore for each 10-s ECG segment can be obtained.

The detailed scoring rules for HR estimation in each 10-s ECG

segment are summarized as:

HRscore =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 �HRref −HRtest� ≤ 0�02×HRref

0�75 0�02×HRref < �HRref −HRtest � ≤ 0�05×HRref

0�5 0�05×HRref < �HRref −HRtest� ≤ 0�1×HRref

0�25 0�1×HRref < �HRref −HRtest� ≤ 0�2×HRref

0 0�2×HRref < �HRref −HRtest�
The final score for Event 2 (HRacc) can be calculated as:

HRacc =
∑

HRscore

number of test recordings
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Fig. 4. Examples of the represented ECG waveforms. Red circles denote the reference QRS locations and black ones denote the detected results by the
P&T algorithm.

Fig. 5. Demonstration of the evaluation method for event 2. In this situation, reference HR can be calculated from the reference QRS annotations between
5.5 s and 9.5 s ECG episode (HRref = 96), and estimated HR can be calculated from the detected QRS annotations between the same 4-s ECG episode
(HRtest = 76).

where HRtest and HRref represent HR calculated by competi-

tor and reference, respectively. HR estimation is usually derived

from the QRS detection but we encourage participant to develop

robust HR estimation without QRS information.

4. DISCUSSION
In this paper, a brand-new database is presented aiming at pro-

moting the development of robust QRS detection and HR estima-

tion algorithms. Although several standard ECG databases (see

Table II) [21, 30–32] are available for the evaluation of QRS

detection algorithms and test on these well-annotated and val-

idated databases provide reproducible and comparable results,

the too high scoring performances are often obtained in these

databases since the relatively good signal quality of ECG wave-

forms. But for all this, the existing QRS detection algorithms are

not faced on the strict even rigorous testing. We emphasize on

this point and address on it by developing a new ECG database

with challenging QRS detection and HR estimation tasks, as well

as propose a new evaluation rule for algorithm test in the devel-

oped challenging ECG database.

Currently, portable battery-operated systems such as mobile

phones with wireless ECG sensors have the potential to be used

in continuous and real-time cardiac function assessment that can

be easily integrated into daily life. However, detection results

for HR calculation on these dynamic ECGs are unsatisfactory.

CPSC 2019 contains 2000 challenging 10-s ECG episodes with

manually annotated QRS locations. This database includes sig-

nals from both pathological rhythm and artifacts, and is a real-

world collected ECG database from the wearable device. We

hope this strictly manual annotated database can benefit the study

for dynamic ECG processing.
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Table II. Summary of the major databases used for ECG signal analysis.

Database # recordings Data descriptions QRS annotation Other information

MIT-BIH arrhythmiaa • 48 • 30-min length
• 2-channel
• 360 Hz

• Beat-by-beat annotations for each
beat in each recording (approx. 119
000 annotations)

• 15 QRS beat types

• Rhythm label annotations

American heart
association ventricular
arrhythmia databasea

• 80 • 35-min length for short
version
3-h length for long
version

• 2-channel
• 250 Hz

• Beat-by-beat annotations for final
30 min

• 8 QRS beat types

• Classified according the level of
ventricular ectopy

QT databasea • 105 • 15-min excerpts
• 2-channel
• 250 Hz

• Beat-by-beat annotations for each
beat in each recording (total of
3622 beats)

• ST-T morphologies
• segmentation of waveforms (for 30

to 100 beats per recording)

T-wave alternans
databasea

• 100 • 2-min ECG
• 12-channel or 2 or

3-channel
• 500 Hz

• Beat-by-beat annotations for each
beat in each recording (total of
19003 beats)

• T-wave alternans information

Supraventricular
arrhythmia databasea

• 78 • 30-min ECG
• 2-channel
• 128 Hz

• Beat-by-beat annotations for each
beat in each recording (total of
184744 beats)

–

Fantasia databasea • 40 • 120-min ECG
• 3-channel
• 250 Hz

• Beat-by-beat annotations for each
beat in each recording (total of 278
996 beats)

• 1 channel for respiration
• 20 single-lead for non-invasive blood

pressure signal

Noise stress test
databasea

• 15 • 30-min ECG
• 2-channel
• 360 Hz

• Beat-by-beat annotations for each
beat in each recording (total of 26,
370 beats under noise conditions)

• Noise was added two-minute
segments alternating with
two-minute clean segments in final
3 recordings

MIT ST change databasea • 28 • Varying lengths
• 2-channel
• 360 Hz

• Beat-by-beat annotations for each
beat in each recording (total of 76
181 beats)

• Recorded during exercise stress
tests

PTBa • 268 • Varying lengths
• 16-channel
• 1000 Hz

• Beat-by-beat annotations for each
beat in each recording

• 9 QRS beat types

• 14-channel ECG
• 1 channel for respiration
• 1 channel for voltage

INCARTa • 75 • 30-min ECG
• 12-channel
• 275 Hz

• Beat-by-beat annotations for each
beat in each recording (total 175
918 beat annotations)

• 10 QRS beat types

–

UCI machine learning:
Arrhythmia dataset

• 452 • 24-h ECG
• 12-channel

• Diagnostic labeling
• No QRS annotation
• 16 QRS beat types

• 279 attributes (age, sex, height,
waveforms description over 12
leads such as duration, amplitudes,
areas)

Long-term-STa • 86 • Between 21 and 24 h
• 2 or 3 ECG signals
• 250 Hz

• Automatically-generated,
manually-corrected QRS beat
annotations

• Annotated ST episode
• ST level measures
• Signal quality annotations

European ST-T databasea • 90 • 2-h ECG
• 2-channel
• 250 Hz

• Beat-by-beat annotations by a
slope-sensitive QRS detector and
then checked by cardiologist

• Annotated ST change
• T-wave morphology rhythm
• Signal quality annotations

MGH/MF waveform
database

• 250 • Varying lengths
• 3-channel
• 360 Hz

• Beat-by-beat annotations for each
beat in each recording

• Include arterial pressure, pulmonary
arterial pressure, central venous
pressure, respiratory impedance,
and airway CO2 waveforms

1st CPSC • 6,877 • Varying lengths
• 12-channel
• 500 Hz

• Diagnostic labeling
• No QRS annotation
• 9 ECG rhythm/morphology types

–

Note: aFrom PhysioBank datasets [21] available at https://physionet.org/.
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