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1. Introduction

Although electrocardiogram (ECG) arrhythmia classification techniques have been studied and used for many 
decades, automatic processing and accurate diagnosis of pathological ECG signals remains a challenge (Clifford 
et al 2006, Oster et al 2015). Ventricular ectopic beat (VEB) is a common abnormal heart rhythm to be detected 
by automatic algorithms. Although single VEBs do not usually pose a danger and can be asymptomatic in healthy 
individuals, frequent or certain patterns of VEBs may be at increased risk of developing serious arrhythmia, 
cardiomyopathy or even sudden cardiac death.
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Abstract
Objective: Ventricular contractions in healthy individuals normally follow the contractions of atria 
to facilitate more efficient pump action and cardiac output. With a ventricular ectopic beat (VEB), 
volume within the ventricles are pumped to the body’s vessels before receiving blood from atria, thus 
causing inefficient blood circulation. VEBs tend to cause perturbations in the instantaneous heart 
rate time series, making the analysis of heart rate variability inappropriate around such events, or 
requiring special treatment (such as signal averaging). Moreover, VEB frequency can be indicative 
of life-threatening problems. However, VEBs can often mimic artifacts both in morphology and 
timing. Identification of VEBs is therefore an important unsolved problem. The aim of this study 
is to introduce a method of wavelet transform in combination with deep learning network for the 
classification of VEBs. Approach: We proposed a method to automatically discriminate VEB beats 
from other beats and artifacts with the use of wavelet transform of the electrocardiogram (ECG) and 
a convolutional neural network (CNN). Three types of wavelets (Morlet wavelet, Paul wavelet and 
Gaussian derivative) were used to transform segments of single-channel (1D) ECG waveforms to 
two-dimensional (2D) time-frequency ‘images’. The 2D time-frequency images were then passed 
into a CNN to optimize the convolutional filters and classification. Ten-fold cross validation was 
used to evaluate the approach on the MIT-BIH arrhythmia database (MIT-BIH). The American 
Heart Association (AHA) database was then used as an independent dataset to evaluate the trained 
network. Main results: Ten-fold cross validation results on MIT-BIH showed that the proposed 
algorithm with Paul wavelet achieved an overall F1 score of 84.94% and accuracy of 97.96% on out 
of sample validation. Independent test on AHA resulted in an F1 score of 84.96% and accuracy of 
97.36%. Significance: The trained network possessed exceptional transferability across databases and 
generalization to unseen data.
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As recommended by ANSI-AAMI (1998), the VEBs include premature ventricular contraction (PVC), R-on-
T PVC and ventricular escape beats. There have been extensive researches on VEBs or PVCs. Almendral et al 
(1995) suggested that there exists a strong correlation of VEBs with left ventricular hypertrophy in hypertensive 
patients, and that individuals with left ventricular hypertrophy carried a significant risk of mortality and sudden 
death. Baman et al (2010) evaluated the PVC burdens in 174 patients where 57 (33%) patients had left ventricular 
dysfunction and discovered a mean PVC burden of 33% ± 13% was present in those with a decreased left ventric-
ular ejection fraction (LVEF) as compared with a mean PVC burden of 13% ± 12% with normal left ventricular 
function. The authors came to the conclusion that ‘A PVC burden of  >24% was independently associated with 
PVC-induced cardiomyopathy’. Dukes et al (2015) studied 1139 participants and found that those in the upper 
quartile of PVC frequency possessed 3-fold greater odds of a 5 year decrease in LVEF, a 48% increased risk of inci-
dent congestive heart failure and a 31% increased risk of death compared to the lowest quartile.

The common VEB detection approaches include two important steps: (1) feature extraction, (2) pattern 
classification. Beat detection is the basis for feature extraction. Two open-source physiologic signal processing 
toolboxes, ECG-kit and PhysioNet Cardiovascular Signal Toolbox (Vest et al 2018), provided by physionet.org 
(Goldberger et al 2000), integrated some classical beat detectors such as Pan and Tompkins (1985), EP-Limited 
(Hamilton and Tompkins 1986), gqrs, wqrs (Zong et al 2003), ecgpuwave, wavedet (Martínez et al 2004) as well as 
a state-of-the-art one, jqrs (Behar et al 2014, Johnson et al 2014). The extracted features are usually related to ECG 
morphologies (Shadmand and Mashoufi 2016), cardiac rhythms or heartbeat intervals (Raj and Ray 2017) and 
wavelet-based features (Elhaj et al 2016). De Chazal et al (2004) extracted four inter-beat (RR) interval features 
(pre-RR interval, post-RR interval, average RR interval and local average RR interval), three heartbeat interval 
features (QRS duration, T-wave duration and P wave flag) and eight groups of ECG morphology features which 
contained amplitude values of the ECG signal and then combined them into eight feature sets to examine the 
classification performance. The current challenge is how to select relevant features for next classification (Saeys 
et al 2007).

A variety of machine learning approaches have previously been used for VEB pattern classification, includ-
ing linear discriminant analysis (LDA) (De Chazal et al 2004, De Chazal and Reilly 2006, Llamedo and Martnez 
2011), artificial neural networks (ANN), (Dokur and Ölmez 2001, Inan et al 2006, Mar et al 2011) and support 
vector machine (SVM) approaches (Zhang et al 2014). Many researchers selected LDA since it is easy to develop 
the model and it is a convenient modeling form when nominal classes are considered; however, the discriminant 
function is always linear (Zopounidis and Doumpos 2002), therefore not fitting for complex non-linear prob-
lems. Due to the nonlinearity of the activation function of ANN, the decision boundary can be nonlinear, making 
the ANN model more flexible and can lead to an improved classification accuracy (Dreiseitl and Ohno-Machado 
2002).

Novel methods were applied on VEB detection and showed enhanced performance. Sayadi et al (2010) pro-
posed a model-based dynamic algorithm for tracking the ECG characteristic waveforms using an extended 
Kalman filter. A polar representation of the ECG signal, constructed using the Bayesian estimations of the state 
variables, and a measure of signal fidelity by monitoring the covariance matrix of the innovation signals from the 
extended Kalman filter were introduced. VEBs were detected by simultaneously tracking the signal fidelity and 
the polar envelope. The algorithm showed an accuracy of 99.10%, sensitivity of 98.77% and positive predictivity 
of 97.47% on the MIT-BIH Arrhythmia Database (MIT-BIH). The drawback of the method is the dependency 
of the results on the initial estimations for the state vector as well as the selection of the covariance matrices of the 
process and the measurement noise, so it may be unsuitable for ECG signals with pathological rhythms. Oster 
et al (2015) proposed a state-of-the-art PVC detection algorithm based on switching Kalman filters. The switch-
ing Kalman filter could automatically select the most likely mode (beat type), normal beat or ventricular beat, 
while concurrently filter the ECG signal using appropriate prior knowledge. For certain heartbeats that could not 
be clustered into expected morphologies of ventricular or normal beats, either due to their rarity or due to the 
amount of noise distorting the apparent morphology, they were classified as a new mode (X-factor). An F1 score 
of 98.6%, sensitivity of 97.3% and positive predictivity of 99.96% were reported on the MIT-BIH when 3.2% of 
the heartbeats were discarded as X-factor. However, this approach was semi-supervised and relied on trained 
cardiologists to assign every beat cluster to normal or ventricular classes. It is therefore inappropriate for analysis 
of large datasets or continuous recordings.

We also note that VEB detection is equivalent to classification in a two-class VEB/not VEB problem. His-
torically, PVC/VEB detection has been implemented using heuristics or optimized thresholds on hand crafted 
features, such as the relative change in the RR interval compared to adjacent RR intervals and/or QRS duration 
and amplitude. In particular we note that Geddes and Warner (1971) designed a logic-based program that meas-
ured RR interval, duration and shape of QRS complexes to find the optimum combination of parameters to 
detect PVCs while rejecting muscle artifacts. Oliver et al (1971) adopted a similar approach that followed a rigidly 
defined protocol, consisted of artifact detection, shape classification and prematurity test for the detection of 
PVCs. Laguna et al (1991) used an adaptive Hermite model and extracted the b parameter for the width of QRS 
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complex and compared the b parameter with a threshold for PVC detection. Clifford et al (2002) demonstrated 
that RR interval-based thresholds were highly sensitive to the threshold and quantified the trade-off between 
misclassifying noise as ectopy or sinus beats. A threshold of 15% was shown to be optimal, although by no means 
sufficient for accurate PVC detection.

Convolutional neural network (CNN) architectures have been successfully used over the last several dec-
ades in image recognition (Lawrence et al 1997), audio and video analysis (Karpathy et al 2014) and many other 
domains (Shashikumar et al 2017) due to their high accuracy, low error rate and fast learning rate. To motivate 
the use of the CNN, we note that a CNN can eliminate the feature design and extraction process required in other 
approaches, identifying the network connections to reproduce the representation of the VEB at an autoassocia-
tive node. Clifford et al (2001) and Tarassenko et al (2001) first demonstrated this for a one-dimensional (1D) 
representation of normal ECG beats and PVCs. That work was limited by the lack of data and computational 
power to fully train a network over a large population, thereby learning generalized morphologies. These authors 
also showed that, in the limit, with a linear activation function, the approach mapped to the Karhunen–Love 
transform, first reported for PVC classification in 1989 by Moody and Mark (1989). In this work we extend these 
earlier works to the time-scale domain and apply further deep CNN layers to map these time-scale images to beat 
classes. In order to take advantage of the success of CNN in the domain of image processing, we converted the 
1D ECG signals to two-dimensional (2D) images by a continuous wavelet transform. By offering a simultaneous 
localization in time and frequency domain, the wavelet transform provides a clear time-frequency characteristic 
of the PVC (Sifuzzaman et al 2009). The convolutional transformation converts a set of amplitude or energy 
measurements (pixels in an image) into feature maps. The spatial dependence of the pixels is exploited by local 
connectivity on neurons on adjacent layers (Affonso et al 2017). The CNN automatically learns features when 
the network is tuned by the stochastic gradient descent algorithm. Moreover, a CNN is capable of learning trans-
lationally (and under specific circumstances, rotationally) invariant features from a vast amount of trained data 
(Cha et al 2017). Since the VEB morphology can change based on the respiratory cycle, sympathovagal balance, 
heart rate and other movements, it is important to identify subtle changes in the beat that are relatively invari-
ant to such changes. The CNN allows us to automatically select such invariant spatio-temporal correlations in 
the image. We note that other authors, such as Kiranyaz et al (2016) and Acharya et al (2017), have attempted to 
classify beats using a CNN-based approach, but used a 1D CNN instead. While, in theory, the CNN could learn 
a time-scale representation of the beat as a preliminary filter, it is unlikely that these exact basis function would 
be learned. In that sense, one can think of this as analogous to whitening a neural network with principal comp-
onent analysis. We also note that there has been much interest in classifying rhythms (rather than beats) from the 
recent Computing in Cardiology (CinC) Challenge 2017 (Clifford et al 2017). In particular Acharya et al (2017), 
Kamaleswaran et al (2018), Parvaneh et al (2018), Xiong et al (2018) and Plesinger et al (2018) used 1D CNN 
approaches to classify arrhythmias. None use a time-scale representation as detailed in this work, or on a beat-by-
beat level.

In this study we propose a systematic approach for training, validating and testing a CNN model for VEB clas-
sification. The method section introduces the datasets we used, a validation and test design as well as a wavelet 
transform to convert the 1D ECG signals to 2D images and the CNN structure. Results section shows the perfor-
mance of the algorithm, followed by discussion, where we compare the proposed method with the state of the art 
algorithms for VEB detection.

2. Method

2.1. Dataset
The MIT-BIH Arrhythmia Database was used for algorithm training, validation and testing. The American 
Heart Association database (AHA) was also used as a separate dataset for further testing. The MIT-BIH consists 
of 48 two-channel recordings, each lasts 30 min, obtained from 47 subjects. Each beat is annotated by at least two 
expert cardiologists independently and all disagreements have been resolved. The ECG signals are sampled at 
360 Hz. In this study, ECG signals from the first channel were used, mostly collected by the modified limb lead 
II (MLII) and on three occasions (record number 102, 104 and 114) by V5. The AHA includes 80 two-channel 
recordings, each lasts 35 min. The final 30 min of each recording are annotated beat-by-beat. The sampling 
frequency is 250 Hz. These 80 recordings are divided into eight classes of ten recordings each, according to the 
highest level of ventricular ectopy present: class 1, no ventricular ectopy; class 2, isolated unifocal PVCs; class 3, 
isolated multifocal PVCs; class 4, ventricular bigeminy and trigeminy; class 5, R-on-T PVCs; class 6, ventricular 
couplets; class 7, ventricular tachycardia; class 8, ventricular flutter/fibrillation. Since recordings in class 8 are used 
for ventricular flutter and fibrillation detection and some ECG waveforms at the beginning of the ventricular 
flutter segments are annotated as PVC beats, where similar segments in MIT-BIH are annotated as ventricular 
flutter instead, the ten recordings in class 8 were excluded from this study for consistency. As recommended by  
ANSI-AAMI (1998), the recordings with paced beats, 4 (102, 104, 107 and 217) out of 48 from MIT-BIH and 
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2 (2202 and 8205) out of 80 from AHA, were also excluded from this study. The reference annotation files the 
databases provided were used as the gold standard. Since we focus on two-type classification, VEB (V) or non-
VEB (N), any beat that does not fall into the V category is set to type N. Examples of VEBs and their corresponding 
time-scale images are shown in figure 1.

In order to find an appropriate window length for beat classification by CNN, we extracted each beat of the ECG 
signal at different window lengths, varying from 0.5 s to 6 s at 0.5 s intervals, with the annotation placed at the center 
of the window. This annotation then marks the beat type of the window. As the sampling frequency of MIT-BIH 
is 360 Hz, a range of 180-point to 2160-point windows were generated. The beats in the first and last 3 s of ECG 
were excluded in all 44 recordings (of the MIT-BIH) in order to keep the total number of beats consistent across all  
window lengths, resulting in a total of 100 372 beats in which 6990 were V. The 69 AHA records were resampled to 
360 Hz and a total number of 163 802 beats including 14 735 V were extracted in the same manner.

2.2. Wavelet transform
Wavelet transform is a spectral analysis technique where signals can be expressed as linear combinations of shifted 
and dilated versions of a base wavelet. Time-frequency representations of these signal can then be constructed, 
offering good time and frequency localization.

Sahambi et al (1997) used the first derivative of a Gaussian to characterize ECG in real-time. The quadratic 
spline wavelet originally proposed by Mallat and Zhong (1992) was used to characterize the local shape of irregu-
lar structures. Martínez et al (2004) adopted this wavelet in their ECG delineator to determine the QRS com-
plexes and P and T wave peaks. Li et al (1995) and Bahoura et al (1997) also used this wavelet to detect the charac-
teristic points and waveforms of ECG. While wavelet transforms have been adopted in the past for detecting ECG 
waveforms, in this paper, we used an improved algorithm to increase efficiency by fast convolution via the fast 
Fourier transform (FFT), explained in detail by Montejo and Suarez (2013). We used the common nonorthogo-
nal wavelet functions: complex wavelets Morlet and Paul, and real valued wavelets derivative of Gaussian (DOG) 
(Torrence and Compo 1998), which are suitable for input to the continuous wavelet transform for time series 
analysis (Farge 1992).

We converted each extracted 1D ECG beat to a 2D time-scale image in this way. The toolbox ‘A cross wave-
let and wavelet coherence toolbox’ was used to perform this conversion (https://github.com/grinsted/wavelet-
coherence). The mathematics behind the wavelet analysis is well documented by Grinsted et al (2004). The con-
verted image consists of information with the wavelet scaling factor as vertical axis ranging from 21 to 29 at 20.2 
intervals and time as horizontal axis. The processed data with different window lengths were resampled to a fixed 
number of points of 45 for consistency. All the images were normalized to scale [0,1]. In this way, the resulting 2D 
images all possess the same size of 41 × 45 and scale, standardized for further processing.

The toolbox supports three types of wavelets for transformation: Morlet wavelet, Paul wavelet and DOG 
wavelet. All three were adopted to compare the effects of different wavelet types when convoluted with the 
extracted ECG beats.

Figure 2 gives an illustration of a VEB beat and a non-VEB beat in their ECGs forms and the results after 
wavelet transform by each type of wavelet. The left shows a VEB beat with a broadened irregularly-shaped QRS 
complex in its ECG and multiple wider warm-colored peaks in its processed images whereas the right shows a 

Figure 1. Examples of PVC, R-on-T PVC and ventricular escape beats from left to right and their time-scale images.
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non-VEB beat with a normal QRS complex in its ECG and two main narrower peaks at the centers of both images 
processed by the Morlet wavelet and the Paul wavelet. There are discernible differences in the outcomes of the two 
beat types processed by the DOG wavelet as well.

2.3. Convolutional neural network
Since we have converted the ECG beats to wavelet power spectra in a 2D space, we then used CNN to study 
relevant information from the power spectra and achieve classification. The input to the CNN was the wavelet 
power spectrum computed from each exacted ECG beat. Our CNN architecture consists of three convolutional 
layers, two max pooling layers (implemented after the first and the second convolutional layer), a rectified linear 

Figure 2. The original ECGs (first row) and their results after wavelet transform with three types of wavelets of the two beat types 
(VEB on the left and non-VEB on the right). The second row represents the outcomes with the Paul wavelet, the third the Morlet 
wavelet and the last the DOG wavelet.

Figure 3. Convolutional neural network structure.

Physiol. Meas. 40 (2019) 055002 (17pp)
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unit (ReLU) layer and finally a fully connected layer. The CNN was implemented using the MatConvNet toolkit 
in Matlab (Vedaldi and Lenc 2015).

In the convolutional layer, a n-by-m sized filter is convoluted with the input image with a stride of 1 along both 
directions, resulting in an output with n – 1 × m – 1 reduction in size from the input. The size of filters used for 
each convolutional layer are 4 × 4, 4 × 6 and 8 × 8, and the number of filters are 50, 100 and 200 respectively. The 
2 × 2  max pooling layer with a stride of two downsamples the input by a factor of two in both directions, drop-
ping 75% of data size while retaining most discernible features for classification. The final layer of convolution 
computes the input into a single value, which after increasing nonlinear properties by the ReLU layer, is passed 
into the fully connected layer thereby producing a final classification result. The weights of the CNN model were 
randomly initialized from uniform distribution. Stochastic gradient descent (SGD) algorithm was chosen to 
optimize the weights of the model. A learn rate of 0.001 was used. Figure 3 shows the structure of the CNN.

2.4. Training, validation and test
The 44 recordings of MIT-BIH were randomly allocated into ten subsets (folds) of data. Random grouping was 
done by recording numbers rather than the total heartbeats, so that the data of one recording would not appear in 
both the training dataset and the testing set to avoid bias and overfitting. Note that records 201 and 202, which are 
from the same patient, are put to one subset mandatorily as well.

Table 1. Gross results on the test folds of the MIT-BIH database.

Wavelet Window (s) Acc (%) Se (%) Sp (%) PPV (%) F1 (%)

Paul 0.5 90.94 71.03 92.43 41.24 52.19

Paul 1 93.29 77.22 94.50 51.23 61.60

Paul 1.5 96.73 80.72 97.92 74.42 77.44

Paul 2 97.52 81.20 98.75 82.90 82.04

Paul 2.5 97.92 82.62 99.07 86.92 84.71

Paul 3 97.88 82.78 99.01 86.23 84.47

Paul 3.5 97.96 82.60 99.11 87.42 84.94

Paul 4 97.88 80.96 99.15 87.65 84.17

Paul 4.5 97.80 80.47 99.10 87.02 83.62

Paul 5 97.55 77.57 99.05 85.90 81.52

Paul 5.5 97.54 77.18 99.06 86.04 81.37

Paul 6 97.48 77.07 99.00 85.26 80.96

Morlet 0.5 93.24 69.33 95.03 51.10 58.83

Morlet 1 94.80 71.42 96.55 60.78 65.67

Morlet 1.5 97.43 79.46 98.77 82.91 81.15

Morlet 2 97.59 80.46 98.87 84.25 82.31

Morlet 2.5 97.77 81.14 99.01 86.04 83.52

Morlet 3 97.55 79.74 98.88 84.21 81.92

Morlet 3.5 97.56 79.01 98.95 84.93 81.86

Morlet 4 97.22 76.57 98.77 82.30 79.33

Morlet 4.5 97.25 75.51 98.88 83.45 79.28

Morlet 5 97.23 74.62 98.92 83.85 78.96

Morlet 5.5 97.07 73.28 98.85 82.69 77.70

Morlet 6 97.02 73.16 98.81 82.11 77.38

DOG 0.5 93.42 49.60 96.70 52.91 51.20

DOG 1 91.90 65.24 93.89 44.44 52.86

DOG 1.5 96.90 77.63 98.34 77.79 77.71

DOG 2 97.74 78.98 99.15 87.41 82.99

DOG 2.5 97.74 78.80 99.16 87.51 82.93

DOG 3 97.74 77.93 99.22 88.20 82.74

DOG 3.5 97.80 78.03 99.28 88.99 83.15

DOG 4 97.81 77.27 99.35 89.91 83.11

DOG 4.5 97.76 76.74 99.33 89.56 82.66

DOG 5 97.66 75.11 99.35 89.65 81.74

DOG 5.5 97.36 73.43 99.15 86.56 79.46

DOG 6 97.33 72.76 99.17 86.79 79.16

Physiol. Meas. 40 (2019) 055002 (17pp)
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To train the CNN model, nine folds of the dataset were used for training and the remaining fold for testing. 
The heartbeats in the training set were further randomly divided into two subsets during the training procedure, 
where 5/6 heartbeats were used to train the model directly and 1/6 heartbeats were used for validation during the 
learning process to optimize the model parameters and avoid overfitting. Finally the trained model was tested on 
the remaining fold. This process was repeated ten times so that each of the ten folds was tested and the results on 
each fold were combined.

See table A1 in appendix for details of the randomly generated K-fold set up we adopted in this evaluation.
After we obtained the ten-fold cross validation models, we tested the ten models on the AHA database. The 

classification result was acquired by averaging the ten probability output of each model. A separate CNN model 
trained on all heartbeats of MIT-BIH was tested on AHA as well. To test the transferability of our model further, 
we used all heartbeats of the AHA database to train a new model and performed a final testing back on MIT-BIH.

2.5. Evaluation method
We used accuracy (Acc), sensitivity (Se), specificity (Sp), positive predictive value (PPV, or  +P) and F1 score (F1) 
to evaluate the performance of the algorithm. For each test fold in MIT-BIH, after we acquired the results of TP 
(V beats correctly identified as V), FN (V beats incorrectly identified as N), FP (N beats incorrectly identified as 
V) and TN (N beats correctly identified as N), we calculated the statistical measures as below:

 •  Acc  =  (TP  +  TN)/(TP  +  FN  +  TN  +  FP).
 •  Se  =  TP/(TP  +  FN).
 •  Sp  =  TN/(TN  +  FP).
 •  PPV  =  TP/(TP  +  FP).
 •  F1  =  2TP/(2TP  +  FN  +  FP).

To combine the ten test folds results into an overall statistics, two types of aggregate statistics were used 
(ANSI-AAMI 1998): gross statistics, in which each beat was given equal weight, and average statistics, in which 
the measures of ten folds were averaged and stored along with their standard deviations.

3. Results

Table 1 illustrated the gross results on the test folds of MIT-BIH. What we obtained with the Paul wavelet at 
different window lengths for test folds was that the F1 score was at its highest with a 3.5 s window, as shown 
in figure 4(b). Results for training folds however, showed a highest F1 score for a 1.5 s window, as shown in 
figure 4(a). Amongst the three wavelets, Paul wavelet provided the best test performance. An Acc of 97.96%, an 
Se of 82.60%, an Sp of 99.11%, a PPV of 87.42% and an F1 of 84.94% were achieved as the gross result on the test 

folds of MIT-BIH with Paul wavelet on a 3.5 s window.
For the training folds, we achieved the best training performance with Paul wavelet on a 1.5 s window an Acc 

of 99.32% and an F1 score of 95.08%. Please see table A2 in appendix for details of the average results on the train-
ing folds. Details of the average results on the test folds can also be found in table A3.

For the Morlet wavelet, a 2.5 s window achieved the highest F1 score for the testing folds and a 2 s window for 
training folds. DOG wavelet performed the best with a 3.5 s window on testing folds and a 1.5 s window on train-
ing folds. See figures A1 and A2 in appendix for details.

(a) (b)

Figure 4. Training and test performances on the MIT-BIH database with Paul wavelet at varying window lengths. (a) Mean training 
performances. (b) Gross test performances.

Physiol. Meas. 40 (2019) 055002 (17pp)
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The performances on individual test fold and individual recording with Paul wavelet at 3.5 s window length 

were shown in tables 2 and 3 respectively.
On the AHA database, we reached an Acc of 97.36%, an Se of 82.83%, an Sp of 98.80%, a PPV of 87.20% and 

an F1 of 84.96% when a model was trained on all heartbeats in MIT-BIH database with Paul wavelet at 3.5 s win-
dow length. The averaged results from the ten probability outputs of each model obtained from ten-fold cross 

validation classification of MIT-BIH were also similar. The performance of the two models is shown in table 4.
When we trained the model on AHA database and tested back on MIT-BIH, we obtained an Acc of 97.56%, an 

Se of 82.55%, an Sp of 98.68%, a PPV of 82.39% and an F1 of 82.47%, as shown in table 5.

4. Discussion

In this work we presented a novel deep learning neural network approach to distinguish VEBs from all other 
types of ECG beats, using a CNN with continuous wavelet transform of the ECG signal as input. The proposed 
approach is not highly computationally intensive due to the relatively simple kernels that were utilized in the 
CNN. We tested the computational time using the trained CNN model for prediction on MIT-BIH database on 
an Intel Xeon E5-2660 2.2 GHz CPU and a Linux platform. The total process time for generating the time-scale 
images on a 3.5 s window using Paul wavelet and classifying the beat using the trained CNN model was 1866 s 
for 100 372 beats, which is equivalent to 18.6 ms per beat. Figure A3 (in the appendix) illustrates the timing for 
various window lengths. We have also tested the process time for several open source algorithms published as 
part of the PhysioNet/CinC Challenge 2017 (focused on atrial fibrillation detection) as a comparison. Results are 
shown for windows sizes from 10 s to 60 s in table A4. We note that our new algorithm is over 100 times faster per 
unit time/window than our previously reported algorithm and approximately 1000 times faster than the other 
algorithms from the PhysioNet/CinC challenge 2017.

It was shown that the Paul wavelet displayed the best performance among the three types of wavelets tested. 
This could be due to the closer resemblance of Paul wavelet to the shape of a standard ECG wave compared to the 
other two wavelet types tested.

The 3.5 s window exhibited the highest accuracy (97.96%) and F1 score (84.94%) using the Paul wavelet. We 
speculate that this is because the 3.5 s window contained at least one heartbeat before the VEB and one heart-
beat after it, so the window captures the dynamic of the premature contraction and the following compensatory 
pause. A relatively shorter window length (3 s for Paul) provided the highest sensitivity (82.78%), and on the 
other hand a relatively longer window length (4 s for DOG) exhibited the highest specificity (99.35%) and PPV 
(89.91%).

We repeated our algorithms at 0.2 s intervals and obtained the following results (illustrated in figure A4). A 
window length of 3.5 s provided the best accuracy and F1 score. The performance on the 0.2 s windows is notably 
impressive, given that it encompasses only the ventricular period and provides no context on prematurity. Con-
versely, longer windows provide information of the relative prematurity or retardation of the beat compared to 
adjacent beats. The examples of successful and failed VEB detection for different window lengths are shown in 
Figure  A5.

Table 4 showed that the performance of the model using all heartbeats in the MIT-BIH database is slightly 
better than that of the average of ten-fold models on the AHA database. The independent test on a separate 
database showed almost the same performance with that on the original database (for F1 score, 84.96% for AHA 
compared with 84.94% for MIT-BIH, for accuracy, 97.36% for AHA compared with 97.96% for MIT-BIH), indi-
cating an generalization ability of the trained CNN model on a separate database.

Comparing to other studies (table 6), we reported ten-fold cross validation results and an independent test 
on a separate database. In contrast to this, other studies divided 44 recordings of MIT-BIH (after the removal of 

Table 2. Test performances on individual fold of the MIT-BIH database with Paul wavelet at 3.5 s window size.

Kth fold TP FP FN TN Acc (%) Se (%) Sp (%) PPV (%) F1 (%)

1 406 193 247 8278 95.18 62.17 97.72 67.78 64.86

2 278 70 39 7350 98.59 87.70 99.06 79.89 83.61

3 807 44 131 9960 98.40 86.03 99.56 94.83 90.22

4 368 12 122 10 634 98.80 75.10 99.89 96.84 84.60

5 542 9 47 8365 99.38 92.02 99.89 98.37 95.09

6 755 2 72 8480 99.21 91.29 99.98 99.74 95.33

7 527 195 315 13 641 96.53 62.59 98.59 72.99 67.39

8 578 9 153 7811 98.11 79.07 99.88 98.47 87.71

9 958 235 30 7884 97.09 96.96 97.11 80.30 87.85

10 555 62 60 10 148 98.87 90.24 99.39 89.95 90.10
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four recordings containing paced beats) into two subsets and used half the recordings (DS1) for training and the 
other half (DS2) for testing (De Chazal et al 2004, Mar et al 2011, Oster et al 2015). A sensitivity of 77.7%, posi-
tive predictivity of 81.9% and false positive rate of 1.2% were reported for VEB class on DS2 by De Chazal et al 

(2004). Note when compared to K-fold cross validation, arbitrary subset-splitting could cause bias since only half  
of the data were used for testing. In addition, records 201 and 202, two records of the same patient, belonged to 
subsets DS1 and DS2 separately, causing the heartbeats of the same patient appear in both training and test sets. 
The conventional methods have some disadvantages, for instance, (1) features were extracted from raw ECG data 
and then fed into the classifier, therefore performance relied on the quality of feature extraction; (2) classification 
models trained and tested following the above procedure suffer from overfitting and show lower performances 
when validated on a separate dataset (Acharya et al 2017). Since the morphologies of VEBs can vary enormously 

Table 3. Test performances on individual records of the MIT-BIH database with Paul wavelet at 3.5 s window size.

Record TP FP FN TN Acc (%) Se (%) Sp (%) PPV (%) F1 (%)

100 1 0 0 2263 100 100 100 100 100

101 0 0 0 1858 100 — 100 — —
103 0 0 0 2077 100 — 100 — —
105 28 29 13 2493 98.36 68.29 98.85 49.12 57.14

106 483 9 35 1494 97.82 93.24 99.40 98.17 95.64

108 11 38 6 1701 97.49 64.71 97.81 22.45 33.33

109 19 0 19 2485 99.25 50.00 100 100 66.67

111 0 1 1 2115 99.91 0 99.95 0 0

112 0 0 0 2530 100 — 100 — —
113 0 3 0 1785 99.83 — 99.83 0 0

114 38 5 5 1824 99.47 88.37 99.73 88.37 88.37

115 0 0 0 1946 100 — 100 — —
116 107 2 2 2293 99.83 98.17 99.91 98.17 98.17

117 0 0 0 1529 100 — 100 — —
118 12 3 4 2251 99.69 75.00 99.87 80.00 77.42

119 442 0 1 1537 99.95 99.77 100 100 99.89

121 1 3 0 1852 99.84 100 99.84 25.00 40.00

122 0 0 0 2466 100 — 100 — —
123 3 0 0 1508 100 100 100 100 100

124 40 0 7 1567 99.57 85.11 100 100 91.95

200 752 2 72 1766 97.15 91.26 99.89 99.73 95.31

201 3 98 195 1661 85.03 1.52 94.43 2.97 2.01

202 6 20 13 2091 98.45 31.58 99.05 23.08 26.67

203 277 132 167 2395 89.94 62.39 94.78 67.73 64.95

205 35 0 36 2576 98.64 49.30 100 100 66.04

207 128 45 80 1596 93.24 61.54 97.26 73.99 67.19

208 958 111 30 1846 95.21 96.96 94.33 89.62 93.15

209 1 6 0 2989 99.80 100 99.80 14.29 25.00

210 149 5 44 2442 98.14 77.20 99.80 96.75 85.88

212 0 0 0 2740 100 — 100 — —
213 180 45 40 2974 97.38 81.82 98.51 80.00 80.90

214 228 24 28 1973 97.69 89.06 98.80 90.48 89.76

215 53 0 111 3188 96.69 32.32 100 100 48.85

219 59 62 4 2021 96.92 93.65 97.02 48.76 64.13

220 0 16 0 2024 99.22 — 99.22 0 0

221 393 0 2 2023 99.92 99.49 100 100 99.75

222 0 30 0 2444 98.79 — 98.79 0 0

223 356 6 117 2117 95.26 75.26 99.72 98.34 85.27

228 307 0 54 1684 97.36 85.04 100 100 91.92

230 0 3 1 2243 99.82 0 99.87 0 0

231 2 0 0 1562 100 100 100 100 100

232 0 124 0 1650 93.01 — 93.01 0 0

233 699 6 129 2234 95.60 84.42 99.73 99.15 91.19

234 3 3 0 2738 99.89 100 99.89 50.00 66.67
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from patient to patient, if patients are not stratified (completely held out of training) there may be an optimistic 
bias in reporting. As shown in table 2, we achieved a superior result on one fold (fold 6) with an Acc of 99.21%, an 
Se of 91.29%, an Sp of 99.98%, a PPV of 99.74% and an F1 of 95.33%, but an inferior result on another fold (fold 

1) with an Acc of 95.18%, an Se of 62.17%, an Sp of 97.72%, a PPV of 67.78% and an F1 of 64.86%.
On the other hand, Acharya et al (2017) also trained a CNN model and adopted a ten-fold cross validation in 

order to classify heartbeats and achieved accuracies of 94.03% and 93.47% in original and noise free ECGs of the 
MIT-BIH database, respectively. In that approach, a balanced database was constructed by replicating the beats of 
classes with a lower beat count to match the majority (class N). For instance, V beats were oversampled 12.5 times 
(i.e. increasing them from 7235 to 90 592). After which, the repeated beats were randomly partitioned into ten 
equal folds by beats instead of by records. As a result, the same VEBs can be found in both training folds as well as 
validation fold violating the basic principles of cross validation. It is far more realistic to evaluate an algorithm’s 

performance with proper K-fold cross validation with stratification of patients across folds.

5. Conclusion

A highly generalizable VEB classification algorithm that utilizes continuous wavelet transform and CNN was 
developed. ECG data can be analyzed rapidly (at 18.6 ms per beat on a standard processor). It was shown that the 
algorithm retained its high performance when tested on a separate database.
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Table 4. Test results on the AHA database by the model(s) trained on the MIT-BIH database with Paul wavelet at 3.5 s window size.

Model TP FP FN TN Acc (%) Se (%) Sp (%) PPV (%) F1 (%)

Trained on MIT 12 205 1792 2530 14 7275 97.36 82.83 98.80 87.20 84.96

Average of 10 12 004 1736 2731 14 7331 97.27 81.47 98.84 87.37 84.31

Table 5. Test results on the MIT-BIH database by the model trained on the AHA database with Paul wavelet at 3.5 s window size.

Model TP FP FN TN Acc (%) Se (%) Sp (%) PPV (%) F1 (%)

Trained on AHA 5770 1233 1220 92 149 97.56 82.55 98.68 82.39 82.47

Table 6. Performance comparison with reference studies.

Algorithm Records Validation Acc (%) Se (%) Sp (%)

PPV 

(%) F1 (%) Separate testset Semi/auto

De Chazal et al (2004) 44 DS2 97.4 77.7 98.8 81.9 79.7 No Auto

Mar et al (2011) 44 DS2 97.3 86.8 — 75.9 81.0 No Auto

Oster et al (2015) 44 DS2 98.87 87.61 99.75 96.43 91.81 Yes Semi

Proposed in this study 44 Ten-fold 97.96 82.60 99.11 87.42 84.94 Yes Auto

Physiol. Meas. 40 (2019) 055002 (17pp)
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Appendix

(a) (b)

Figure A1. Training and test performances on the MIT-BIH database with Morlet wavelet at varying window lengths. (a) Mean 
training performances. (b) Gross test performances.

(a) (b)

Figure A2. Training and test performances on the MIT-BIH database with DOG wavelet at varying window lengths. (a) Mean 
training performances. (b) Gross test performances.

Figure A3. Process time per beat with varying window sizes.

Physiol. Meas. 40 (2019) 055002 (17pp)
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Figure A5. Example of a successful detection of VEB (left) versus a failed detection (right). Top to bottom: Original ECG and time-
scale images of window length: 1 s, 2 s, 3 s, 4 s.

Figure A4. Test performance on the MIT-BIH database with Paul wavelet at 0.2 s and 0.5 s intervals.

Physiol. Meas. 40 (2019) 055002 (17pp)
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Table A1. The randomly generated K-fold set up adopted.

K-fold

Record 

number

VEB 

beats

Non-VEB 

beats Total K-fold

Record 

number VEB beats

Non-VEB  

beats Total

1 100 1 2263 2264 6 122 0 2466 2466

1 203 444 2527 2971 6 123 3 1508 1511

1 207 208 1641 1849 6 200 824 1768 2592

1 220 0 2040 2040 6 212 0 2740 2740

Total 653 8471 9124 Total 827 8482 9309

2 108 17 1739 1756 7 105 41 2522 2563

2 114 43 1829 1872 7 201 198 1759 1957

2 121 1 1855 1856 7 202 19 2111 2130

2 214 256 1997 2253 7 213 220 3019 3239

7 228 361 1684 2045

7 234 3 2741 2744

Total 317 7420 7737 Total 842 13 836 14 678

3 116 109 2295 2404 8 106 518 1503 2021

3 209 1 2995 2996 8 124 47 1567 1614

3 222 0 2474 2474 8 215 164 3188 3352

3 233 828 2240 3068 8 231 2 1562 1564

Total 938 10 004 10 942 Total 731 7820 8551

4 103 0 2077 2077 9 101 0 1858 1858

4 115 0 1946 1946 9 112 0 2530 2530

4 118 16 2254 2270 9 208 988 1957 2945

4 223 473 2123 2596 9 232 0 1774 1774

4 230 1 2246 2247

Total 490 10 646 11 136 Total 988 8119 9107

5 111 1 2116 2117 10 109 38 2485 2523

5 113 0 1788 1788 10 117 0 1529 1529

5 210 193 2447 2640 10 119 443 1537 1980

5 221 395 2023 2418 10 205 71 2576 2647

10 219 63 2083 2146

Total 589 8374 8963 Total 615 10 210 10 825

Total VEB 

beats

Total non-

VEB beats

Total beats

6990 93 382 100 372

Physiol. Meas. 40 (2019) 055002 (17pp)
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Table A2. Average results on training folds of the MIT-BIH database.

Wavelet Window (s) Acc (%) Se (%) Sp (%) PPV (%) F1 (%)

Paul 0.5 99.20 ± 0.06 92.99±1.28 99.66± 0.09 95.42 ± 1.06 94.18 ± 0.48

Paul 1 99.32 ± 0.04 93.86 ± 0.76 99.73 ± 0.07 96.35 ± 0.90 95.08 ± 0.31

Paul 1.5 99.32 ± 0.04 93.79 ± 1.05 99.74 ± 0.04 96.40 ± 0.52 95.08 ± 0.37

Paul 2 99.28 ± 0.05 93.23 ± 1.03 99.73 ± 0.07 96.34 ± 0.78 94.75 ± 0.38

Paul 2.5 99.26 ± 0.06 93.02 ± 0.87 99.73 ± 0.06 96.26 ± 0.73 94.61± 0.41

Paul 3 99.28 ± 0.06 93.08 ± 0.96 99.74 ± 0.06 96.49 ± 0.75 94.75 ± 0.44

Paul 3.5 99.28 ± 0.05 92.94 ± 0.96 99.75 ± 0.06 96.58 ± 0.79 94.72± 0.38

Paul 4 99.25 ± 0.05 92.39 ± 1.20 99.76 ± 0.06 96.68 ± 0.71 94.47 ± 0.46

Paul 4.5 99.19 ± 0.06 91.79 ± 1.38 99.74 ± 0.08 96.43 ± 0.92 94.04 ± 0.54

Paul 5 99.12 ± 0.06 91.03 ± 1.49 99.72 ± 0.07 96.07 ± 0.74 93.47 ± 0.57

Paul 5.5 99.06 ± 0.07 90.52 ± 1.56 99.70 ± 0.07 95.80 ± 0.75 93.08 ± 0.66

Paul 6 99.02 ± 0.07 90.13 ± 1.38 99.68 ± 0.07 95.48 ± 0.71 92.72 ± 0.62

Morlet 0.5 98.41 ± 0.17 83.40 ± 2.61 99.53 ± 0.08 92.98 ± 1.02 87.9 ± 1.53

Morlet 1 99.13 ± 0.06 92.20 ± 0.87 99.65 ± 0.09 95.23 ± 1.13 93.68 ± 0.48

Morlet 1.5 99.16 ± 0.07 91.81 ± 1.57 99.71 ± 0.07 96.01 ± 0.86 93.85 ± 0.57

Morlet 2 99.20 ± 0.06 92.04 ± 1.11 99.73 ± 0.04 96.25 ± 0.45 94.09 ± 0.50

Morlet 2.5 99.17 ± 0.06 91.92 ± 1.34 99.71 ± 0.06 96.02 ± 0.75 93.92 ± 0.51

Morlet 3 99.16 ± 0.05 91.70 ± 1.11 99.71 ± 0.06 95.99 ± 0.62 93.79 ± 0.46

Morlet 3.5 99.14± 0.05 91.50 ± 1.00 99.72 ± 0.06 96.03 ± 0.77 93.71 ± 0.43

Morlet 4 99.07 ± 0.06 90.61 ± 0.96 99.70 ± 0.05 95.81 ± 0.58 93.14 ±  0.52

Morlet 4.5 98.98 ± 0.07 89.85 ± 1.41 99.66 ± 0.07 95.25 ± 0.88 92.46 ± 0.61

Morlet 5 98.95 ± 0.07 89.62 ± 1.40 99.65 ± 0.06 95.03 ± 0.60 92.24 ± 0.66

Morlet 5.5 98.86 ± 0.08 89.23 ± 1.23 99.58 ± 0.06 94.14 ± 0.71 91.61 ± 0.67

Morlet 6 98.83 ± 0.07 88.93 ± 1.20 99.57 ± 0.06 93.89 ± 0.69 91.33 ± 0.64

DOG 0.5 96.26 ± 0.34 60.34 ± 6.98 98.94 ± 0.17 80.95 ± 1.91 68.95 ± 4.95

DOG 1 98.80 ± 0.12 88.41 ± 1.92 99.57 ± 0.10 93.97 ± 1.19 91.09 ± 0.98

DOG 1.5 99.18 ±0.07 91.73 ± 1.76 99.74 ± 0.08 96.33 ± 0.94 93.96 ± 0.57

DOG 2 99.11 ±0.09 91.23 ± 1.64 99.70 ± 0.11 95.86 ± 1.25 93.47 ± 0.62

DOG 2.5 99.02 ±0.09 90.26 ± 1.53 99.68 ± 0.07 95.51 ± 0.76 92.80 ± 0.66

DOG 3 99.03 ±0.10 89.97 ± 1.81 99.70 ± 0.09 95.82 ± 1.00 92.79 ± 0.79

DOG 3.5 98.98 ± 0.10 89.51 ± 1.55 99.69 ± 0.07 95.60 ± 0.82 92.45 ± 0.77

DOG 4 98.92 ± 0.10 88.47 ± 2.01 99.70 ± 0.06 95.72 ± 0.69 91.94 ± 0.94

DOG 4.5 98.87 ± 0.10 88.05 ± 2.15 99.68 ± 0.09 95.37 ±1.00 91.54 ± 0.93

DOG 5 98.79 ± 0.10 86.98 ± 2.04 99.68 ± 0.08 95.29 ± 1.09 90.92 ± 0.95

DOG 5.5 98.71 ± 0.12 86.34 ± 2.33 99.63 ± 0.09 94.67± 1.12 90.29 ± 1.11

DOG 6 98.65 ± 0.13 85.83 ± 2.29 99.60 ± 0.08 94.19 ± 1.05 89.80 ± 1.21
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Table A3. Average results on the test folds of the MIT-BIH database.

Wavelet Window(s) Acc (%) Se (%) Sp (%) PPV (%) F1 (%)

Paul 0.5 90.55 ± 8.54 70.46 ± 22.99 92.07 ± 9.19 55.39 ± 31.14 54.86 ± 25.74

Paul 1 92.87 ± 8.51 77.19 ± 19.74 94.12 ± 9.34 70.14 ± 31.80 66.69 ± 25.34

Paul 1.5 96.53 ± 3.04 80.34 ± 15.62 97.66 ± 3.21 78.55 ± 23.75 76.86 ± 17.68

Paul 2 97.50 ± 2.15 80.95 ± 13.13 98.65 ± 1.87 84.64 ± 17.64 81.85 ± 13.28

Paul 2.5 97.94 ± 1.61 82.03 ± 11.25 99.05 ± 1.16 87.39 ± 13.23 84.41 ± 11.36

Paul 3 97.92 ± 1.49 82.83 ± 11.27 98.98 ± 1.25 87.09 ± 13.51 84.44 ±10.46

Paul 3.5 98.01 ± 1.34 82.32 ± 12.26 99.11 ± 1.00 87.92 ± 11.75 84.67 ± 10.51

Paul 4 97.95 ± 1.31 80.70 ± 13.06 99.15 ± 0.96 88.14 ± 11.62 83.87 ± 10.86

Paul 4.5 97.85 ± 1.33 80.06 ± 12.78 99.10 ± 1.14 87.73 ±12.12 83.24 ± 10.61

Paul 5 97.60 ± 1.26 76.68 ± 14.45 99.03 ± 1.20 86.58± 13.13 80.52± 11.23

Paul 5.5 97.58 ± 1.23 76.00 ± 15.28 99.05 ± 1.16 86.78 ± 13.69 80.00 ± 11.76

Paul 6 97.51 ± 1.32 75.89 ± 15.38 98.97 ± 1.29 86.14 ± 14.18 79.59 ±  12.15

Morlet 0.5 92.87 ± 8.46 68.12 ± 26.31 94.70 ± 9.17 70.23 ± 31.80 61.52 ± 28.95

Morlet 1 94.43 ± 5.96 71.16 ± 22.57 96.18 ± 6.46 71.73 ± 27.35 65.98 ± 23.76

Morlet 1.5 97.31 ± 2.24 78.97 ± 15.95 98.63 ± 2.17 83.82 ± 20.36 79.37 ±  16.25

Morlet 2 97.56 ± 1.60 80.17 ± 13.33 98.80 ± 1.32 84.37 ± 16.87 81.19 ± 12.66

Morlet 2.5 97.84 ± 1.31 80.54 ± 11.69 99.04 ± 0.86 86.32 ± 12.08 83.01± 10.40

Morlet 3 97.59 ± 1.12 79.26 ± 13.19 98.88 ± 0.98 84.30 ± 13.97 80.77 ± 10.44

Morlet 3.5 97.63 ± 1.10 78.35 ± 14.30 98.96 ±  0.90 85.48 ± 11.95 80.86 ± 10.13

Morlet 4 97.32 ± 1.31 75.55 ± 15.96 98.82 ± 1.04 83.51 ± 13.10 78.32 ± 11.75

Morlet 4.5 97.31 ± 1.28 74.26 ± 16.14 98.89 ± 1.02 83.96 ± 13.15 77.81 ± 12.33

Morlet 5 97.28 ± 1.23 73.35 ± 16.42 98.92 ± 1.00 84.13 ± 13.46 77.28 ± 12.42

Morlet 5.5 97.10 ± 1.25 72.07 ± 16.55 98.84 ± 1.20 83.45 ± 14.66 76.06 ± 12.47

Morlet 6 97.03 ± 1.31 71.72 ± 16.85 98.78 ± 1.20 82.45 ± 15.45 75.42 ± 13.33

DOG 0.5 92.94 ±  7.27 49.32 ± 31.44 96.12 ± 8.10 73.83 ± 30.63 49.55 ± 28.05

DOG 1 91.53 ± 9.23 64.35 ± 21.28 93.57 ± 9.84 66.76 ± 34.97 58.63 ±  26.46

DOG 1.5 96.82 ± 2.92 77.46 ± 15.09 98.19 ± 2.78 80.84± 23.52 77.12 ± 17.62

DOG 2 97.74 ± 1.70 78.78 ± 14.02 99.11 ± 1.10 87.27 ± 14.62 82.25 ± 12.75

DOG 2.5 97.76 ± 1.60 78.04 ± 12.62 99.14 ± 1.08 87.88 ± 13.55 82.34 ± 11.83

DOG 3 97.77 ± 1.42 77.63 ± 15.32 99.19 ± 0.92 87.81 ± 13.86 81.63 ± 12.51

DOG 3.5 97.84 ± 1.45 77.6 ± 15.70 99.26 ± 0.76 88.32 ± 12.45 82.02 ± 12.72

DOG 4 97.87 ± 1.47 76.55 ± 15.81 99.35 ± 0.66 89.27 ± 11.63 81.97   13.09

DOG 4.5 97.79 ± 1.36 76.18 ± 15.15 99.32 ± 0.64 88.70 ± 11.36 81.52 ± 12.61

DOG 5 97.71 ± 1.31 74.11 ± 16.55 99.35 ± 0.57 88.42 ± 11.85 80.00 ±  13.77

DOG 5.5 97.38 ± 1.38 71.89 ± 19.17 99.12 ± 1.00 86.21 ± 16.28 76.76 ± 16.17

DOG 6 97.36 ± 1.32 71.09 ± 19.81 99.15 ±  0.88 86.31 ± 14.60 76.30 ± 16.21
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