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Signal Quality Assessment and Lightweight QRS
Detection for Wearable ECG SmartVest System
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Abstract—Recently, development of wearable and Internet of
Things (IoT) technologies enables the real-time and continuous
individual electrocardiogram (ECG) monitoring. In this paper,
we develop a novel IoT-based wearable 12-lead ECG SmartVest
system for early detection of cardiovascular diseases, which con-
sists of four typical IoT components: 1) sensing layer using textile
dry ECG electrode; 2) network layer utilizing Bluetooth, WiFi,
etc.; 3) cloud saving and calculation platform and server; and
4) application layer for signal analysis and decision making.
We focus on addressing the challenge of real-time signal quality
assessment (SQA) and lightweight QRS detection for wearable
ECG application. First, a combination method of multiple signal
quality indices and machine learning is proposed for classifying
10-s single-channel ECG segments as acceptable and unaccept-
able. Then a lightweight QRS detector is developed for accurate
location of QRS complexes. The results show that the proposed
SQA method can efficiently deal with tradeoff between accepting
good (97.9%) and rejecting poor (96.4%) quality ECGs, ensuring
that only a low percentage of recorded ECGs are discarded. The
proposed lightweight QRS detector achieves a F1 score higher
than 99.5% for processing clean ECGs. Meanwhile, it reports
significantly higher F1 scores than two existing QRS detectors
for processing noisy ECGs. In addition, it also has a fine com-
putation efficiency. This paper demonstrates that the developed
IoT-driven ECG SmartVest system can be applied for widely
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monitoring the population during daily life and has a promising
application future.

Index Terms—Cardiovascular disease (CVD) monitoring,
eHealth and mHealth, electrocardiogram (ECG), electrocardio-
gram QRS detection, Internet of Things (IoT), signal quality
assessment (SQA), wearable ECG device.

I. INTRODUCTION

CARDIOVASCULAR diseases (CVDs) are the leading
cause of death globally (32.1%) and result in 17.9 mil-

lion deaths in 2015 [1]. However, it is estimated that
90% of CVDs is preventable [2]. The sooner the disease
is detected, the better quality of life the patient will have.
Electrocardiogram (ECG) is a good way for early monitor-
ing of CVDs; however, traditional clinical ECG scan only
includes limited time length signals, missing the asymptomatic
or intermittent characteristics of CVDs. Therefore, developing
real-time, long-term ECG monitoring is essential for disease
early detection. Thanks to the quick development of wearable
and Internet of Things (IoT) technologies, making the real-
time, long-term, and convenient individual ECG monitoring
available [3]–[6].

The IoT-driven ECG monitoring can play a significant role
in improving the health and wellness of subjects by increasing
the availability and quality of healthcare, with the application
for CVD early detection, as well as for other situations, such
as sports and fitness, rehabilitation, elderly care support, emo-
tion and sleep monitoring, etc. [4], [7], [8]. Meanwhile, it
can significantly reduce travel, cost and time in remote and
long-term ECG monitoring [7]–[9]. However, for IoT-driven
wearable ECG monitoring, technology challenges exist, and
are mainly from the following aspects.

The first challenge comes from the physical implementa-
tion (hardware) of the wearable smart ECG garment system,
including textile sensor design [10], ergonomic design for
comfort measurement [11], [12], wireless transmission [13],
power consumption and optimization [14].

The second comes from the real-time and accurate signal
analysis performed on the embedded processor in smart-
phone, including signal quality assessment (SQA), real-time
and adaptive feature extraction, intelligent diagnosis for ECG
abnormalities (both rhythm and morphology abnormalities).

SQA is an essential step for the intelligent ECG anal-
ysis. ECGs collected via mobile approach are easily pol-
luted by a variety of noises, including body movement,
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circumstance interference, etc. [15], [16]. The corrupted
ECG data could lead to medical misdiagnosis via cardiac
monitors. SQA has been a research topic since the suc-
cess of the physionet/computing in cardiology challenge
2011 [16], [17], which generated a lot of advanced method
for SQA. The typical methods include: threshold-based [18],
multifeature fusion [19], ensemble decision trees [20], self-
organizing neural network [21], regularity matrix [22], com-
bination of signal quality indices (SQIs) and support vector
machine (SVM) [15], [16].

QRS complex is the most striking waveform and it
serves as the basis for the automated determination of
other ECG characteristics. QRS detection has been exten-
sively studied for over 40 years. The typical methods
include: Pan-Tompkins (P&T) algorithm [23] and its varia-
tions [24], [25], RS-Slope method [26], adaptive wavelet mul-
tiresolution analysis [27], difference operation method [28],
max–min difference method [29], optimized knowledge based
algorithm [30], Fourier and Hilbert transforms [31], wqrs
algorithm [32], etc. Currently, the accuracy of QRS detector
for processing noisy wearable ECGs need to be improved.
Portable battery-operated devices have limited computation
resource. Thus improvement of computation cost efficient is
also necessary.

The third comes from the big data processing, machine
learning, and cloud computing for long-term ECG big
data analysis, which involves the determination of efficient
machine learning methods [33], [34], long-term prediction and
inference methods for disease risk evaluation, deep-learning,
and deep-mining for specific disease type.

In this paper, we first described the system architecture
for the developed Wearable 12-lead ECG SmartVest system.
Then we focused on the key SQA and QRS detection for
single-channel ECG processing used in the smartphone-side
of the developed device. We aimed to present a real-time
and lightweight single-channel ECG processing scheme for
use of IoT-driven wearable devices and reducing the bur-
den in cloud server, and identified two key contributions
as follows.

1) SQA methods from analyzing good quality ECGs are
not suitable for wearable ECG analysis. For wearable
ECG monitoring, the majority of ECGs have a variety
of noise components. So intelligent SQA method should
automatically identify the ECG episodes, although noisy
but with diagnosis value, as the “acceptable.” This is the
first contribution.

2) Textile dry electrodes were used in SmartVest to
replace the Ag/AgCl electrodes. Relative displacement
changes between the electrode and skin can induce large
amplitude and unexpected noises. ECGs recorded by
SmartVest tend to be more vulnerable to noises. Thus
accurate QRS detection is challenging. So the second
contribution is to develop a robust and lightweight QRS
detector to adaptively and intelligently detect the QRS
complexes under complicated noisy environment.

This paper is organized as follows. Section II briefly
summarizes the system architecture for the developed ECG
SmartVest system. Section III details the methods of SQA

and lightweight QRS detection. Section IV presents the exper-
iment designs, including the data and evaluation approaches.
Section V details the results. Section VI gives the discussions.
Finally, Section VII summarizes the conclusion.

II. ARCHITECTURE OF WEARABLE 12-LEAD

ECG SMARTVEST SYSTEM

In this section, we present the architecture of the wearable
12-lead ECG SmartVest system, which provides an IoT-driven
24/7 ECG monitoring service for people that may have poten-
tial CVD risks. As illustrated in Fig. 1, the IoT-driven based
system consists of four typical IoT components, i.e., sensing
layer, network layer, cloud platform, and application layer.

In sensing layer, individual multichannel ECGs are simul-
taneously collected using ten textile dry electrodes embedded
in the SmartVest. Four electrodes (RA, LA, LL, and RL)
are attached in the four corners of torso, and six electrodes
(V1, V2, V3, V4, V5, and V6) are attached on the chest.
The collected multichannel ECGs are common 12-lead ECGs,
namely as I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, and
V6. Using of conductive textile electrodes is to meet the com-
fort requirement. A self-charged ECG module is embedded
in SmartVest, which can start-up signal recording, and imple-
ment hardware filtering, de-noising and amplifying. Note that
the collected ECG data will be stored locally in remember card
of ECG module and can be transmitted to the cloud platform
via WiFi network and TCP/IP network protocol. The ECG
module also includes a Bluetooth deliver module to transmit
the ECG signal to smartphone in real time.

For network layer, a Bluetooth receive module is used to
acquire the ECGs from smartphone. Meanwhile, smartphone
can access to cloud platform by 4G network and TCP/IP
network, to upload data or download reports generated in cloud
platform. In addition, a WiFi module can upload the stored
long-term ECGs in ECG module to cloud platform at a preset
frequency.

Cloud platform first serves as an cloud ECG database, pro-
viding structured data saving and management. More impor-
tantly, it implements artificial intelligence (AI) and cloud
computing tasks for big ECG data processing, providing
valuable disease prediction and diagnosis.

The application layer has the multiple interactions with the
other layers. In general, it includes two function modules: one
is real-time analysis and another one is post-processing. For
users, the real-time analysis module receives the ECGs from
the user-side and implements the real-time signal process-
ing on the application program installed in smartphone (see
Fig. 2), including the detections of QRS complex, P wave and
T wave, as well as heart rate (HR), ST segment, etc. Then
the analysis reports can be generated and can be uploaded to
cloud platform as required. For doctors, the real-time analysis
module can provide a real-time display of ECGs and indi-
vidual user’s reports via the Web server (see Fig. 3). The
saved individual healthiness status is also provided to facilitate
the doctors’ in-depth diagnosis. The post-processing mod-
ule mainly performs the complicated diagnosis and prediction
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Fig. 1. Architecture of the developed Wearable 12-lead ECG SmartVest system.

(a) (b)

Fig. 2. Application program on smartphone to facilitate the uses to observe
the ECGs and real-time parameters, such as HR information. ECG waveforms
from two recordings states are shown: (a) resting and (b) running states. It is
clear that the recorded ECGs are clear even during the running state.

analysis for CVD risks, using the data mining, machine learn-
ing, and AI technologies, to provide comprehensive parameter
results, decision support, systematical diagnosis report.

III. SIGNAL QUALITY ASSESSMENT AND LIGHTWEIGHT

QRS DETECTION ALGORITHMS

Accurate SQA and QRS detection for wearable ECGs is
essential not only for the smartphone-side application but
also for the application in cloud server, such as AI and
cloud computation for big ECG data. Herein, we separately
detail the mechanisms for SQA and lightweight QRS detec-
tion algorithms for the real-time and dynamic ECG monitoring
application.

A. Signal Quality Assessment

1) Lead-Fall Detection: Lead-fall appears when the ECG
amplitude keeps a constant for a preset time length. According
to Hayn’s study [35], ECG is detected as lead-fall signal if the
portion of samples with constant amplitude is higher than 80%.

2) Signal Quality Indices: SQIs measures the signal quality
or noise levels in ECGs. Typical SQIs were extensively studied
in previous works [16], [36], [37]. SQIs used in this paper
include the following.

a) bSQI: bSQI assesses the agreement level of two QRS
detectors within a fixed time window. The hypothesis here
is the presence of noises in ECG can lower the agreement
level between two semi-independent QRS detectors. The inde-
pendence of QRS detectors is important. The original bSQI
proposed by Li et al. is based on two well documented open-
source QRS detection algorithms: P&T algorithm based on
digital filtering and integration [23] and wqrs algorithm based
on a length transform after filtering [37]. For a w-second sig-
nal window, bSQI is defined as the ratio of beats detected
synchronously by both algorithms to all the detected beats by
either algorithm

bSQI = Nmatched

NP&T + Nwqrs − Nmatched
(1)

where Nmatched is the number of beats that both algorithms
agreed upon using a threshold of 150 ms, NP&T is the number
of beats detected by P&T, and Nwqrs is the number of beats
detected by wqrs. Therefore, bSQI ranges between 0 and 1.

b) tSQI: tSQI assesses the morphology consistency of
any two ECG beats (with P&T QRS locations) within a fixed
time window. The correlation matrix C = [cij] is constructed,
where cij is the correlation coefficient between the ith beat and
the jth beat. tSQI is defined as

tSQI =
∑M

i=1
∑M

j=1 cij

M2
(2)

where M is the beat number in a fixed time window.
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(a) (b) (c)

Fig. 3. Demonstrations of ECG waveforms for a real-time display via the Web server to facilitate the doctors’ observations. ECGs are from three recording
states: (a) resting, (b) walking, and (c) running. In each subfigure, the three limb lead ECGs, i.e., lead I, II, and III, are shown, with the calculated HR values
for each heart beat.

c) iSQI: iSQI assesses the interval abnormal index for
RR interval time series (with P&T QRS locations) with a fixed
time window. RR intervals are sorted in ascending order and
then the 15% percentile value RR15 and 85% percentile value
RR85 are selected, and iSQI is defined as

iSQI = RR15

RR85
. (3)

d) aSQI: aSQI assesses the high amplitude artifact in
ECGs. In general, the signal amplitude in normal ECGs is
2.5–3.0 mV. Huge impulses (≥5 mV) exist in situations of
motion artifacts, or huge baseline wander. We count the times
Tn that the amplitude changes are larger than 5 mV for
a nonoverlap sliding window (0.2 s), and define aSQI as

aSQI = exp

(

−
(

Tn

5

)2
)

. (4)

e) pSQI: pSQI assesses the power spectrum distribu-
tion feature. ECG waveform usually has a frequency range
of 0.05–125 Hz for clinical diagnosis and a frequency range
of 0.05–45 Hz for clinical monitoring. High signal quality
ECGs usually have a distinguishable QRS complex, which has
a frequency range from several to a dozen of Hz [16], [37].
So, the ratio of power spectral density in the QRS energy band
to that in the overall energy band provides a useful measure,
thus pSQI is defined as

pSQI = ∫15Hz
5Hz P(f )df

∫45Hz
5Hz P(f )df

(5)

where P(f ) is the autoregressive (AR) model spectrum and the
Burg algorithm is adopted for parameter estimation.

f) sSQI: sSQI is the third moment (skewness) of the ECG
signal distribution [16], [37], and is defined as

sSQI =
∣
∣
∣
∣
∣

1

N

N∑

i=1

(
(xi − μ)

σ

)3
∣
∣
∣
∣
∣

(6)

where xi is the ECG signal with N sample points, μ is the
signal mean, and σ is the standard deviation (SD), | · | means
the absolute value.

g) kSQI: kSQI is the fourth moment (kurtosis) of the
ECG signal distribution [16], [37], and is defined as

kSQI = 1

N

N∑

i=1

(
(xi − μ)

σ

)4

(7)

where all parameters have the same meanings with sSQI.
3) Nonlinear Features: The nonlinear features are expected

to address the inherent nonlinear characteristic in ECGs. They
have been applied in the SQA in previous studies [38], [39].
Herein, we include the following nonlinear features as SQIs,
most of which are new developed.

a) Sample entropy: Entropy refers to the degree of
regularity or irregularity of a signal [40], [41]. Sample
entropy (SampEn) is widely used one. Repeated patterns imply
increased regularity in the signal and lead to low SampEn
values. By contrast, random Gaussian noises can output large
entropy values. SampEn is especially sensitive to Gaussian
noises in ECGs [39].

b) Fuzzy measure entropy: Decision rule for vector sim-
ilarity in SampEn is based on Heaviside function, and its
rigid boundary effect may induce to the poor stability, and
even failure to define the entropy if no vector-matching could
be found [42], [43]. As an improved version, Fuzzy mea-
sure entropy (FuzzyMEn) uses a fuzzy membership function
to replace the Heaviside function, and combines both local
and global similarities for entropy calculation, giving a better
discrimination for time series [44].

c) Lempel-Ziv complexity: Lempel-Ziv (LZ) is a com-
plexity measure, and has been applied as an ECG signal
quality index [45]. The classical LZ complexity consists of
two steps. First, an original time series is transformed into
a new binary symbolic sequence, and then LZ value is
calculated by counting the new patterns in the binary sequence.
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d) Encoding LZ complexity: Encoding LZ (ELZ) can not
only distinguish chaotic and random characteristics in ECGs
but also can indicate the noise level, especially for ECGs cor-
rupted by high frequency noise [46]. For ELZ calculation, the
original signal is transformed into an 8-state symbolic (3-bit
binary) sequence by an encoding approach.

4) Features Normalization: Since the nonlinear features
have much higher computation complexity, in this paper, we
only consider the seven SQIs for real-time SQA used in
smartphone-side. These SQIs form the real-time signal quality
vector as

SQIreal−time = [
bSQI, tSQI, iSQI, aSQI, pSQI, sSQI, kSQI

]
.

(8)

For SQA used in cloud server, the signal quality vector is
added with the nonlinear features as

SQIcloud = [
bSQI, tSQI, iSQI, aSQI, pSQI, sSQI, kSQI,

SampEn, FuzzyMEn, LZ, ELZ
]
. (9)

For each of the feature vectors X, we normalize them by
subtracting the median value Xmedian (less prone to outliers
than the mean) and dividing by the SD σX as

X = X − Xmedian

σX
. (10)

The mean and SD from the training set were used for both
the training and test set when normalizing.

B. Lightweight QRS Detection Algorithm

For long-term wearable ECG monitoring, noises are wide-
sourced, and sometimes are unexpected due to the unexpected
human activities. In SQA step, we weight more priority to
reserve the relatively noisy ECGs rather than to exclude them,
i.e., we want to make full use of the recorded ECGs and
assess them as clean/useful for the following signal analysis.
Thus, the QRS detection step is challenging. The main hur-
dle we have to overcome is to ensure high detection accuracy
in the selected relatively noisy ECGs. Meanwhile, the devel-
oped algorithm should be lightweight and has small calculation
burden, to facilitate the real-time analysis on smartphone-
side. Dynamic ECG detection is usually challenged by motion
artifacts due to the unexpected motion intensity and motion
state, and the noises due to the change of relative displace-
ment between electrode and skin. These noises have typical
characteristics as large baseline wander and transient high
amplitude impulse. Thus we specifically consider the corre-
sponding strategies to solve out this challenges and detail it
as below.

First, in order to deal with the large baseline wander, we
consider a correction algorithm which involves a combina-
tion of a high order linear-phase filter and a sliding window
averaging to remove the influence of large baseline wander.

Second, in order to deal with the transient high amplitude
impulse, we use an amplitude calibration technique with the
combination of signal filtering to weaken noise amplitude and
enhance the amplitude of QRS complex.

Fig. 4. Flowchart of the proposed lightweight QRS detector.

Third, finding an optimal threshold for QRS detector is
another challenge. The high amplitude T waves and impulses
can disturb the identification of QRS complexes. In addition,
the ECG waveforms vary not only for signals from different
subjects but also for those collected from the same subject
due to the difference motion states. Therefore, an adaptive
mechanism for threshold updating needs.

Last, all approaches should consider the calculation burden
on the smartphone-side for real-time signal processing and
feedback, and they should be computationally efficient.

So the proposed QRS detection algorithm consists of four
key steps including baseline correction, fast Fourier trans-
formation (FFT) band-pass filter, amplitude calibration, and
adaptive QRS location. The algorithm flowchart is illustrated
in Fig. 4. Each step is detailed as follows.

Step 1 (Baseline Correction): Baseline wander below 7.5 Hz
was extracted from the raw ECG using an order 200 finite
impulse response low-pass filter, which was a common
Hamming-window based, linear-phase and all-zero filter. Then
the filtered ECG was obtained by removing the baseline
wander from the raw ECG, and was refiltered by an order
10 median filter with 200 ms block size.

Step 2 (FFT Band-Pass Filter): In this step, baseline
removed signal was filtered by an FFT band-pass filter, with
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the frequency range of 2–35 Hz. Using FFT band-pass filter
aimed to enhance the implement efficiency of QRS detector
embedded in smartphone.

Step 3 (Amplitude Calibration): The filtered signal after
Step 2 was then inputted an amplitude calibration module.
First, the signal was normalized and the negative values were
depressed. Then the module sliced the signal into 1-s time
length ECG episodes, and calculated the signal amplitude in
each episode, and then sorted these amplitude values from all
1-s ECG episodes in a 10-s window size. The median ampli-
tude value was identified as the calibration reference for each
1-s ECG episode, and all 1-s ECG episodes were calibrated
to fit this calibration reference.

Step 4 (Adaptive QRS Location): The filtered signal after
amplitude calibration was transferred into an integrated energy
signal. An adaptive amplitude threshold was employed to
detect QRS peak candidates in the integrated energy sig-
nal. This adaptive amplitude threshold was initially set as
Ap = 0.6 times of the calibration reference for each 1-s ECG
episode in the Step 3, and then automatically updated based
on the number of the detected QRS peaks with the following
criteria:

Ap =
{

0.5 number of QRS < 8
0.7 number of QRS > 14.

(11)

Then, an optimization step was performed by rechecking the
adjacent RR intervals from all detected peaks. The RR interval
less than 360 ms was rechecked to see whether it was a false
positive QRS detection and the RR interval larger than 1.5 s
was rechecked to see whether a false negative QRS. We
compared the RR interval less than 360 ms with the mean
value and confirmed the false positive when the mean value
is 1.8 times larger than the checked RR interval. Similarly,
we compared the RR intervals larger than 1.5 s with the
mean value, and confirmed the false negative when the mean
value is 0.6 times less than the checked RR interval. Finally,
a 200 ms refractory blanking technology was used to optimize
the detected QRS locations. The rechecking and optimization
were performed on the 10-s signal window.

IV. EXPERIMENT DESIGNS

A. Data Recording and Labeling

Long-term ECG data during daily activities were collected
using the developed SmartVest system, with a sample rate
of 500 Hz and a 12-bit resolution. Signal recording lasted
from March 2017 to October 2017, generating a total of
317 recordings with varied time length.

Extremely noisy ECGs are the main challenge for real-time
and dynamic ECG processing. To deal with this, first, we
visually inspected the recorded ECGs and manually selected
about 1000 of 10-s single-channel ECG segments with differ-
ent signal quality situations (from slightly noisy to extremely
noisy). As comparison, a part of clean 10-s single-channel
ECG segments were also selected. The single-channel ECG
segments can be from any of the 12 leads of I, II, III,
aVR, aVL, aVF, V1, V2, V3, V4, V5, and V6. Then, three
independent annotators were asked to label the selected 10-s

Fig. 5. Typical 10-s single-channel ECG segments from each signal quality
level. ECG segments from Levels A-E have the decreased signal quality.

single-channel ECG segments into five different signal qual-
ity levels: A to E. The interpretation of signal quality labeling
criteria was summarized in Table II. If two or more annotators
agreed with the quality labeling, the quality annotation on this
10-s segment was confirmed. This paper was performed using
a MATLAB (MathWorks, Natick, MA, USA) graphical user-
interface (GUI) interface. Annotated 10-s ECG single-channel
segments were summarized in Table I. Typical examples in
each signal quality level were shown in Fig. 5. ECG segments
from Level E type were too noisy and should be excluded.
We identified all ECG segments in Levels A to D as accept-
able whereas those from Level E as “unacceptable,” for our
wearable ECG monitoring.

B. Online Open ECG Data

1) PhysioNet/CinC Challenge 2014 Database: This
database included 200 ECG recordings from the
2014 PhysioNet/CinC Challenge, which were separated
into two subdatabases: 1) 100 recordings with high signal
quality as the training set (denoted as Test set A) and
2) another 100 recordings with low signal quality as the
augmented training set (denoted as Test set B). The former
was sampled at 250 Hz and the latter was sampled at 360 Hz.
Each recording had a time length of 10 min. Reference QRS
locations were provided [47].

1) Telehealth ECG Database: This database (denoted as
Test set C) included 250 telehealth ECGs (only lead-I ECGs,
sample rate as 500 Hz, time length 30 s) recorded by
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TABLE I
SUMMARY OF THE SELECTED 10-S SINGLE-CHANNEL ECG

SEGMENTS FOR EACH SIGNAL QUALITY LEVEL

the TeleMedCare Health Monitor (TeleMedCare Pty., Ltd.,
Sydney, Australia). Signals were collected using dry metal
electrodes and were recorded in an unsupervised environment.
Reference QRS locations were also provided [33].

C. Evaluation Methods

The evaluation procedure was presented in Fig. 6.
Data recorded by our SmartVest system were used for train-
ing the SQA algorithm. First, ECG segment was identified
if it was a lead-fall signal. Then seven SQIs were calculated
to train a signal quality classification model for smartphone
application. In addition, for cloud server application, where the
computation cost was not limited, the nonlinear signal quality
features were also calculated.

We used the open-source libsvm software package to train
and learn an SVM-based classification model [48]. Tenfold
cross-validation method was used to enhance the general-
ization ability of the trained model. The default param-
eters for SVM were: radial basis function as the kernel
function, gamma parameter γ = 0.1 in kernel function,
cost parameter C = 1. Thus the ECG segments could
be identified as acceptable (levels A–D) or unacceptable
(level E).

Then the acceptable segments were used to train the
lightweight QRS detector for optimizing its thresholds and
parameters. ECGs from online open databases were used for
test, which includes 72 415 QRS complexes for Test Set A,
78 681 for Test Set B, and 6708 for Test Set C. The reference
QRS labels were used as the benchmarks for algorithm evalu-
ation. Two existing QRS detectors of P&T [23] and jqrs [32]
were used as comparison methods. We also performed the
QRS detectors on each of 10-s ECG episode.

Let denotes the reference QRS positions. For the ith posi-
tion xi, we counted the numbers of detected QRS within time
regions: [xi − δxi + δ] and (xi + δxi+1 − δ). Parameter δ was

Fig. 6. Evaluation procedure for the SQA and lightweight QRS detection
algorithms.

a tolerate for determining the true positive (TP), false posi-
tive (FP) and false negative (FN) QRS detections and was set
as 50, 100, and 150 ms, respectively, in this paper. Finally,
the evaluation metrics of sensitivity (Se), positive predictivity
(P+), and F1-score as the geometric average of the former two
metrics were calculated as

Se = TP

TP + FN
× 100% (12)

P+ = TP

TP + FP
× 100% (13)

F1 = 2 × Se × P+
Se + P+

× 100%. (14)

In addition, the computation cost for the mobile applica-
tion is important. We compared the time costs between the
proposed method and the traditional P&T and jqrs algorithms
by analyzing the 10-s ECG segments on the used online open
databases. The evaluation was implemented in a MATLAB
2014a environment (The MathWorks Inc., Natick, MA, USA)
on an Intel i5 CPU 3.30 GHz.

V. RESULTS

A. Signal Quality Assessment Results

The overall signal quality classification results for the
10-s ECG segments were summarized in Table II. SVM-
based signal quality classification model achieved 100%
correct classifications for ECG segments in Levels A, B,
and C. Correct classifications for the majority in Levels
D (90.9%) and E (96.4%) were also achieved. The SVM-
based model can achieve an average accuracy of 97.9%
and 96.4% for acceptable and unacceptable ECG segments,
respectively, verifying the model efficiency to select good or
exclude poor quality ECG segments in the real wearable ECG
monitoring.
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TABLE II
PERFORMANCE OF THE SVM-BASED SIGNAL QUALITY CLASSIFICATION

MODEL USING A TENFOLD CROSS VALIDATION

B. QRS Detection Results

Fig. 7 shows an example of the lightweight QRS detector,
with the comparison of P&T and jqrs. The new QRS detector
output less false positive and false negative detections than the
two comparable methods. Table III shows their performances
on the test data under three types of tolerate δ: 50, 100, and
150 ms, respectively. All three QRS detectors achieved high
detection accuracy (all F1 ≥ 99.5%) for Test set A (a rel-
ative high quality database) but had relatively low detection
accuracy (all F1 < 91%) for Test sets B and C (poor quality
databases). F1-values showed the three QRS detectors had no
significant differences for Test set A, but had obvious differ-
ences for Test sets B and C. The new QRS detector achieved
the highest F1 results for Test sets B and C, at each of three
tolerate types.

Specifically, when δ = 50 ms, P&T reported F1-values of
79.02% and 72.69% for Test sets B and C, jqrs reported F1-
values of 78.38% and 73.99%, whereas the new one achieved
F1-values of 80.09% and 76.60%, with about 1–2% improve-
ment for Test set B and 3–4% improvement for Test set
C. From Table III, it can be noted that P&T generated more
FP detections than jqrs, while the latter generated more FN
detections than the former. However, the new method kept the
advantages for both comparable methods, and achieved a good
balance between FP and FN detections.

With the increase of tolerate δ, detection accuracy increased
for all three QRS detectors. When δ increased from 50 ms to
150 ms, F1-values of P&T increased from 79.02% to 86.28%
and then to 88.45% for Test set B, and increased from 72.69%
to 76.12% and then to 76.39% for Test set C. F1-values of
jqrs increased from 78.38% to 85.20% and then to 86.59%
for Test set B, and increased from 73.99% to 75.37% and
then to 75.60% for Test set C. For the new detector, F1-values
increased from 80.09% to 87.66% and then to 90.31% for
Test set B, and increased from 76.60% to 78.17% and then to
78.41% for Test set C. Similar F1 result trends appeared for
the three QRS detectors with the change of tolerate δ.

For computation efficiency evaluation, P&T and jqrs
reported similar mean time costs (3.2 ms versus 3.1 ms)
on 10-s ECG segments. Meanwhile, jqrs had a much larger
SD (0.4 ms versus 0.9 ms) than P&T. The proposed
lightweight algorithm had the highest computation efficiency
(Mean: 2.3 ms, SD: 0.7 ms), generating 28% and 26% time

(a)

(b)

(c)

(d)

(e)

Fig. 7. Example for demonstrating the lightweight QRS detector. (a) Raw
10-s ECG segment with the baseline wander (red dashed line). (b) ECG after
baseline wander correction. (c) ECG after FFT band-pass filter. (d) ECG after
amplitude calibration (detected QRS complexes as solid circles). (e) QRS
complexes (red solid circles) were identified in raw ECG. As a comparison,
detected QRS by P&T (black solid squares) and jqrs (black solid circles) were
also shown.

cost decreases compared with the P&T and jqrs methods,
respectively.

VI. DISCUSSION

The requirement for real-time long-term ECG monitoring
is growing. A traditional ECG Holter is often inconvenient
to carry because it attaches many electrodes to the chest.
Wearable ECG devices have been developed in the past sev-
eral years [4], [7], [10], [49]. For better understanding the
need of remote and continuous ECG monitoring, as well as
why the wearable and IoT technologies can help, we briefly
summarized the developments of ECG devices as four gener-
ations, and demonstrated the typical devices in Fig. 8, with
the summary of their characteristics in Table IV. The first-
generation device [Fig. 8(a)] is the traditional ECG scan device
that widely used in clinic, which collects the patients’ 12-lead
ECGs for dozens of seconds in a rest and quiet environment.
ECGs recorded in this way have high signal quality, providing
the doctor opportunity for manually identifying tiny changes
in waveforms. However, since many pathological situations
are silent during the resting recording due to the asymp-
tomatic or intermittent in CVDs, the first-generation device
can miss the useful ECG episode. Holter [Fig. 8(b)] is the
second-generation ECG device, which can record up to 24 h
multichannel ECGs. The long-term ECGs are essential for
detecting the asymptomatic or intermittent CVD situations.
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TABLE III
PERFORMANCES OF THE THREE QRS DETECTORS ON THE ONLINE OPEN DATABASES

AT THREE TYPES OF TOLERATE: 50, 100, AND 150 ms, RESPECTIVELY

(a) (b)

(c) (d)

Fig. 8. Demonstrations of the four generations of ECG devices.

However, signal processing and diagnosis analysis in Holter
is hysteretic. This type device only records the 24-h ECGs
in a memory card without any real-time analysis. Thus, it
is blind for real-time feedback for disease risk. In addition,
the post-processing for 24-h data brings a heavy burden for

TABLE IV
SUMMARY OF THE CHARACTERISTICS OF THE

FOUR GENERATIONS OF ECG DEVICES

the backend server. Thus, the third-generation ECG device is
developed, which is a Holter-like device but adds a wire-
less module to transmit the ECG waveforms to a portable
smartphone or similar device. The smartphone is required to
take real-time and intelligent signal analysis task, to identify
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normal, abnormal, or pathological situations. Whatever the
second-generation Holter or the third-generation Holter-like
device, it uses Ag/AgCl wet electrodes, and the Ag/AgCl elec-
trode requires conductive gel to work efficiently. However,
conductive gel can dehydrate in a few hours, resulting in the
degradation of signal quality in the long-term monitoring [6].
Meanwhile, conductive gel can cause irritation and allergy
on the skin. It can hardly meet the comfort requirement for
long-term monitoring [5], [10]. Thus, the wearable smart ECG
garment is developed as the fourth-generation device, which
uses the textile dry electrodes to improve the comfort in signal
recording. Wearable smart garment is emerging as a promis-
ing technology for the miniaturization of devices for vital signs
monitoring recently [10], [12], [50]. Wearable smart ECG gar-
ment combines the technologies of textile sensor, ergonomic
design, big data, cloud computing, machine learning, and can
be served as an ideal IoT monitoring terminal. Fig. 8(d) shows
an example of the fourth-generation device, i.e., the wearable
12-lead ECG SmartVest system, which is jointly developed
by our Lab in Southeast University and Lenovo Research
Institute. Other typical wearable ECG devices include: Vital-
Jacket developed by the University of Aveiro, Portugal [51],
wearable context-aware ECG monitoring system with built-in
Kinematic sensors [52], wearable ECG unit [53], etc.

The advantages of the new developed IoT-based SmartVest
system are: 1) the ergonomic design was used for the manufac-
ture to unsure the comfort of the cloth; 2) the dry electrode was
optimized from the comparison among several different tex-
tile materials, which was verified in our previous study [12];
3) we constructed a could platform for big-data ECG moni-
toring and processing; and 4) last but not least, we focused on
the efficient SQA method and lightweight QRS detection for
single-channel ECG processing on the developed system, and
verified the performances.

For IoT-driven wearable application, the tradeoff between
keeping a low quality recording or discarding a good quality
recording is always a key issue. This paper proposes a com-
bination method of multiple SQIs and SVM-based machine
learning for automatically classifying the signal quality of
acquired ECGs under resting, ambulatory and physical activ-
ity environments. The results demonstrate that the proposed
method can efficiently deal with the tradeoff between accept-
ing good (97.9%) and rejecting poor (96.4%) quality signals
and can efficiently reserve ECG segments with diagnosis value
from the severely distorted signals, ensuring that only a low
percentage of recorded ECGs are discarded, thereby reducing
the unnecessary recollection of the recordings and enhancing
resource utilization efficiency of IoT-enabled devices. This is
critical for the wearable monitoring systems.

Meanwhile, we developed a new lightweight QRS detector
for robustly identifying QRS complex from the noisy ECGs,
and achieved high detection performances with low computa-
tion cost. The new QRS detector had a F1 score (≥ 99.5%)
as high as the two existing methods (P&T and jqrs) for clean
ECGs (Test set A) while achieved a significantly higher F1-
value for noisy ECGs (Test set B). Evaluation results on the
real collected telehealth environment (Test set C) further ver-
ified its high sensitivity (Se ≥ 90%) by generating much

less FN QRS detections, which is important for real-time
ECG parameters, such as HR values and HR changes. In
addition, the proposed lightweight QRS detector also showed
a significant computation efficiency, with 28% and 26% time
cost decreases compared with the P&T and jqrs algorithms,
respectively.

Potential limitations should be discussed. First, the devel-
oped algorithms in this paper focused on the daily activities
monitoring. The monitored population are commonly healthy
subjects without serious CVD situations. The challenge here is
mainly the robust QRS detection under extremely noisy envi-
ronment. The current work did not include the test on the
challenging pathological conditions such as ventricular fib-
rillation or ventricular tachycardia detection. Meanwhile, it
also was not designed to deal with the pacemaker situation,
which cannot be processed by a 2–35 Hz band-pass filter.
Second, the algorithms developed in current work is based
on single-channel ECG analysis, without considering that the
inter channel agreement metrics can benefit for the SQA or the
information fusion approach can benefit the QRS locations. We
identify these two points as our future works. Finally, although
we have achieved high classification accuracy for accept-
able and unacceptable 10-s ECG segments, the classification
criteria for the five signal quality levels can be further refined.

VII. CONCLUSION

In this paper, we present a novel IoT-based Wearable 12-lead
ECG SmartVest system for cardiovascular health monitoring
applications. The IoT-driven system can collect multichannel
ECGs using textile dry ECG sensors, implement the automatic
real-time and accurate signal analysis in smartphone-side, and
then employ wireless connectivity to transmit gathered ECGs
and analyzed results directly to the cloud server and the doc-
tors for further clinical review. In this IoT-monitoring mode,
the ECG SmartVest system saves the medical resources in
terms of the medical cost and the time of physicians. The
results presented here indicate that is possible to accurately
classify the signal quality and detect the QRS complexes for
wearable ECGs in real time, and thereby provide a real-time
accurate and time cost efficient feedback (such as signal qual-
ity, heart rate, disease risk, etc.) for the developed Wearable
ECG SmartVest system. Thus, the IoT-based Wearable 12-lead
ECG SmartVest system is suitable to be applied to the mas-
sive CVD-prone population and holds promising application
future.
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