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Abstract— Atrial fibrillation (AF) can cause a variety of heart
diseases and its detection is insufficient in outside hospital.
We proposed three methods for AF diagnosis in ambulatory set-
tings. The first method is a convolutional neural network (CNN)
trained on modified frequency slice wavelet transform (MFSWT)
data. The second is a support vector machine (SVM) classifier
trained on multiple AF features data. The third method is an
SVM trained on the same feature set but extended by the
predictive probability of the CNN. The proposed method (the
third one) achieved the highest detection accuracy. MIT-BIH AF
database was used as a training set with an accuracy of 97.87%
for 30-s ECG episodes and 96.09% for 10-s ECG episodes
from fivefold cross-validation. The trained model was tested on
the PhysioNet/Computing in Cardiology (CinC) Challenge 2017
database, achieving an accuracy of 93.21% for 30-s episodes
and 93.03% for 10-s ECG episodes. When tested on the China
Physiological Signal Challenge (CPSC) 2018 database, the corre-
sponding accuracies were 98.48% and 98.61%. The results on
the wearable ECGs from a clinical AF patient were 99.21%
and 97.04%. We retrained the model on the PhysioNet/CinC
Challenge 2017 data set and tested on the other database
to explore the generalization ability of the proposed method.
Corresponding test results on the MIT-BIH AF database showed
accuracies of 96.84% and 95.13%, on the CPSC 2018 database
were 96.21% and 98.45%, on the wearable ECGs were 99.08%
and 96.43%. The results proved that the proposed method could
provide high accuracy and reliable recognition for AF events.
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I. INTRODUCTION

ATRIAL fibrillation (AF) is a tachyarrhythmia disease,
and its prevalence accounts for 1%–2% of the total

population. It is expected to increase threefold by 2050, which
is a serious health problem [1], [2]. AF can cause many
cardiovascular diseases, which can greatly affect the health
of patients and even endangers the lives of patients [3], [4].
AF is independently related to age, and a survey found that the
lifetime risk of AF is 25% by the age of 40 [5]. Therefore,
the auxiliary diagnosis of AF can help doctors to improve
treatment strategies for patients and achieve higher treatment
quality, thereby reducing the morbidity and mortality of AF
and critical illness caused by AF.

Many researchers have proposed AF detection algorithms
based on the analysis of atrial activity [6], including
wavelet sample entropy [7], wavelet entropy [8], relative
wavelet energy [9], detection algorithms based on P-wave
absence [10], and F-waves-based detector [11]. However, P-
and F-waves are extremely sensitive to noise. Especially in the
wearable monitoring situations, daily activities will produce
complicated interferences, and the analysis of atrial activity
will not be applicable. Thus, the AF detection algorithms
based on the analysis of ventricular response have been
developed [12]. Typical methods include variability analy-
sis, statistical methods, complexity estimation, and entropy
estimation, such as Lorenz plot analysis [13], Poincare plot
analysis [14], density histogram of delta RR intervals [15],
median absolute deviation of RR intervals [16], coefficient
of sample entropy [17], normalized fuzzy entropy [18], and
entropy of AF [19].

AF detection algorithms based on several of the above
features and machine learning algorithms could achieve better
performance. Babaeizadeh et al. [20] trained a decision-tree
classifier using P-wave and RR interval features, resulting in
the performance: sensitivity of 92% and positive predictivity
of 97%. Mohebbi et al. [21] proposed an AF detector using
a support vector machine (SVM) and spectrum features and
nonlinear features, reporting a sensitivity of 96.30%, a speci-
ficity of 93.10%, and positive predictivity of 92.86%. On the
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PhysioNet/Computing in Cardiology (CinC) Challenge 2017,
the tied first Datta et al. [22] trained a multilayer cascaded
binary-based classifier using multiple AF features, including
statistical features, frequency features, morphological features,
heart rate variability features, and other abnormality features.
Although modest successes were achieved, the generaliza-
tion capabilities of the developed machine learning-based
models have not been comprehensively verified and were
not tested on multiple data sets with different data proper-
ties. Due to the significant individual differences, the poor
generalization capability can be inevitable when tested on
wearable ECGs [23], which limits the developed AF detec-
tors that can be robustly used in the wearable monitoring
situations.

Convolutional neural network (CNN) has good performance
for feature extraction and has been widely used in signal
classification [24]. Some researchers directly trained CNN
on I-D ECG and obtained good performance. However, as a
nonstationary signal, the variation on ECG waveforms may
bring negative impacts upon classifying tasks with CNN.
When the ECG waveform changes greatly, the model may
not be able to classify accurately. Time–frequency (T-F)
analysis is a common signal processing method by spec-
trum transform on short time windows and weakens the
negative impact of long-term nonstationary. The modified
frequency slice wavelet transform (MFSWT) [25] as new
T-F technology can convert the 1-D ECG segment to 2-D
T-F image, with an accurate expression for the relationship
between time and frequency domains. Thus, in this study,
MFSWT was used to transform 1-D ECG into 2-D T-F
images and CNN was used to extract features from T-F
images, and then an AF/non-AF classifier was trained by the
CNN model.

Compared with the traditional AF detectors, the CNN model
is data-driven. If the training samples lack diversity, the model
is prone to overfitting, and the generalization ability of the
model will be correspondingly poor. But the use of CNN
offers the advantage that extracts ECG features automatically
without the need for QRS detection [26]. The problems faced
by the traditional AF detectors are that it is challenging to
locate QRS complexes on wearable ECGs, the AF detector
based on multiple features is unable to achieve the expected
performance. If the advantages of the two methods can be
combined, an AF detector with better generalization ability
and universality can be realized. Thus, we further integrate
the CNN model output with the SVM classifier, and to see
if the combination of methods can significantly increase the
performance of AF detection.

In the current study, we trained three models for AF clas-
sification: a CNN model with the MFSWT method, an SVM
model trained on RR interval features, and an augmented SVM
model trained with the combination of RR interval features
and CNN prediction probability for AF. In order to verify the
generalization ability and universality of the proposed method,
we tested models on four databases from rest and dynamic
ECG recording environments, and added noise with different
noise ratio (SNR) to verify the robustness of the proposed
method.

TABLE I

DATA DETAILS FOR ECG EPISODES

II. METHOD

A. Database

Four databases were used, including the MIT-BIH AF
database [27], [28], the PhysioNet/CinC Challenge 2017 data-
base [29], the first China Physiological Signal Challenge
(CPSC) 2018 database [30], and the wearable long-term record
collected directly from the clinic. We trained the models on the
MIT-BIH AF database (rest ECG recording environment) and
the PhysioNet/CinC Challenge 2017 database (dynamic ECG
recording environment), respectively, and tested them on all
the other databases except themselves.

1) MIT-BIH AF Database: The database is from an
open-source data website PhysioNet (https://www.physionet.
org/content/afdb/1.0.0/) [27], [28]. ECG signals were sampled
at 250 Hz. The database has 23 publicly available ECG
recordings from AF patients (mostly paroxysmal) with every
10 h 15 min in duration and two ECG channels. The database
has four types of rhythm annotations: AF, AFL (atrial flutter),
J (AV junction rhythm), and N (normal). In this study, AFL, J,
and N were classified as non-AF category as suggested in [18].
All recordings have manually corrected annotations. In our
study, lead I was selected. We divide the data into AF group
and non-AF group according to the annotation. The 30- and
10-s time windows were used to segment ECG recordings into
an episode. Table I shows the data details.

2) PhysioNet/CinC Challenge 2017 Database: This data-
base is also from the website PhysioNet (https://www.
physionet.org/content/challenge-2017/1.0.0/) [29], including
four types of rhythms: normal sinus rhythm (NSR), AF,
an alternative rhythm, and noisy ECGs. ECG signals were
sampled at 300 Hz. The opened training set contains 771 AF
recordings lasting from 9 to just over 60 s. We selected the
recordings from AF group and non-AF group (containing
normal and other arrhythmias). These AF recordings were
segmented into 30- and 10-s episodes, respectively. Then, these
episodes were re-labeled by the doctor. The data details were
shown in Table I.

3) CPSC 2018 Database: The CPSC2018 was the first
CPSC (http://2018.icbeb.org/Challenge.html). ECG signals
were sampled at 500 Hz, lasting from a few seconds to tens
of seconds [30]. We selected the first lead ECGs from AF
group and normal group as the test data. The signal was
segmented into 30- and 10-s episodes, and each episode was
labeled by the doctor (see Table I).

4) Wearable Long-Term Record: To verify the practical
usefulness, a 24-h ECG recording (12 h before and 12 h
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Fig. 1. Wearable ECG device. It can collect the Lead I, Lead II, and Lead
III ECG signals simultaneously.

Fig. 2. Examples from a 10-s preoperative ECG and a 10-s postoperative
ECG.

after the radio frequency ablation surgery) was collected from
an AF patient by the wearable ECG device. The device
was developed by Southeast University and Lenovo [31].
Fig. 1 shows the wearable ECG device. ECGs were sampled
at 400 Hz. Fig. 2 shows a 10-s preoperative ECG episode
and a 10-s postoperative ECG episode. Data were labeled by
the doctor. We removed the episodes with pure noises, then
selected 1200 30-s AF episodes before surgery and 1200 30-s
non-AF episodes after surgery (see Table I). The AF patient
was recruited from Qilu Hospital of Shandong University
and has signed the informed consent form. The protocol
was approved by the Ethics Committee of Qilu Hospital of
Shandong University.

B. Feature Extraction

To locate QRS complex waves, we used the QRS detector
presented by Paoletti and Marchesi [32]. For each ECG
episode, if no QRS complexes were detected, we consider the
signal as noise, and this signal was excluded in the followed
analysis. If the number of detected QRS complexes waves was
less than 5, the sample entropy (SampEn) [33] of the signal
cannot be calculated. The specific calculation process can refer
to [33] and [17]. We consider the signal as non-AF signal.

In [34], eight features for AF detection in dynamic ECG
were introduced. We selected these features and four heart rate
features, including mean RR intervals of episode (mRR), max-
imum heart rate of episode (maxHR), minimum heart rate of
episode (minHR), and median heart rate of episode (medHR).

Fig. 3. MFSWT spectra of 10-s ECG episodes. (a) MFSWT spectrum of 10-s
AF episode. (b) MFSWT spectrum of 10-s normal episode.

Then traversed all the feature combinations, and input SVM
in turn, and finally selected the combination with the highest
accuracy. The optimal feature set includes mRR, maxHR,
minHR, and medHR, entropy of AF [19], SampEn [33], and
coefficient of sample entropy (CosEn) [17]. The minimum
(maximum or median) heart rate was calculated from the
maximum (minimum or median) RR interval, respectively.

Entropy of AF was presented by Zhao et al. [19] to improve
the performance of AF algorithms based on entropy. The
detailed calculation process for entropy of AF can be found
in [19]. SampEn was proposed in 2000 by Richman and
Moorman [33], which was used in the analysis of ECG signals
and other biological time series. Zhao et al. [19] presented
CosEn which was improved based on SampEn. The specific
calculation process can refer to [33] and [17].

C. MFSWT and CNN

MFSWT was used to transform 1-D ECG waveforms into
2-D T-F images. CNN was trained on 2-D T-F MFSWT
images.

1) MFSWT: Luo et al. [25] proposed an MFSWT method
for abnormal ECG beat identification. MFSWT was improved
on the basis of the frequency wavelet transform, which used a
T-F representation to accurately locate the time and frequency
information in ECG (such as QRS complexes wave and
P-wave). The detailed calculation process for MFSWT can
be seen in [25].

All signals are resampled to 300 Hz. For 10-s ECG episodes,
MFSWT produced T-F spectrograms with a resolution of
500 × 900 (corresponded time resolution of 500 and 0–90-Hz
frequency range). Then we reduced the resolution to 100 ×
45 by an average 5 × 20 template operator. For 30-s ECG
episodes with a resolution of 1000 × 2700, we reduced the
resolution to 200 × 45. Fig. 3 shows MFSWT spectrums with
a resolution of 100 × 45 from 10-s ECG episodes.

2) CNN: CNN was implemented with the Neural Net-
work Toolbox in MATLAB R2017b, by inputting 30 or 10-s
MFSWT images. In order to reduce parameters, expand the
perception field, and achieve more efficient learning, we used
multiple small convolution layers. For 30-s images, the size
of the input layer (layer 0) is 45 × 200 × 1, followed by
a 19-layer network, containing seven convolution layers, two
max pooling layers, seven ReLU layers, one full-connection
layer, and one softmax layer besides the output layer. For
10-s images, the size of the input layer (layer 0) is 45 ×
100 × 1, followed by an 18-layer network, containing seven
convolution layers, one max pooling layer, seven ReLU layers,
one full-connection layer, and one softmax layer besides the
output layers. Fig. 4 shows the architecture of the CNN model.
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Fig. 4. Architecture of the CNN model.

TABLE II

CNN SPECIFICATIONS DESIGNED FOR THE 30- AND 10-S

ECG CLASSIFICATION MODEL

Parameters were listed in Table II. When the MIT-BIH AF
database was as a training set, epochs were 20 for 30-s
images and 10 for 10-s images. When the PhysioNet/CinC
Challenge was as a training set, the corresponding epochs were
165 and 55.

D. Classifiers and Evaluation Methods

SVM was adopted as the classifier. A Gaussian kernel
function was selected with two important parameters: the

Fig. 5. Flowchart of our study.

kernel width Gamma and regularization parameter capac-
ity. In this work, we used LibSVM Toolbox in MATLAB
R2017b. To parameter optimization, we selected the grid
search method [35] with Gamma range as {2(−15:F2:F3)} and
capacity range as {2(−5:F2:F15)}.

To evaluate the proposed algorithm, we adopted three
widely evaluation indicators: accuracy (Acc), sensitivity (Se),
and specificity (Sp). According to the positive or negative of
the label, four indexes were generated: true positive (TP), true
negative (TN), false positive (FP), and false negative (FN).
In this work, Acc is defined as

Acc = (TP + TN)/(TP + TN + FP + FN).

Se is defined as

Se = TP/(TP + FN).

Sp is defined as

Sp = TN/(TN + FP).

Fig. 5 shows the flowchart of our study. To verify the gener-
alization abilities of the proposed methods, they were trained
with either MIT-BIH AF (using fivefold cross-validation) or
PhysioNet/CinC Challenge 2017 database and evaluated on the
three holdout databases.

III. RESULTS

A. Results From Training on the MIT-BIH AF Database

1) Results From Fivefold Cross-Validation on the MIT-BIH
AF Database: We divided 23 recordings from the MIT-BIH
AF database into fivefold, and each fold is three or four
recordings for testing, leaving 18 or 19 recordings alone for
training. We selected the average of the experimental result to
be evaluated, the classification results as shown in Fig. 6.

When combining MFSWT and CNN, Acc, Se, and Sp were
92.49%, 92.17%, and 92.86%, respectively, from the 30-s
episode analysis, and Acc was 91.30% for the 10-s episode
(Se 90.91% and Sp 91.91%).
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TABLE III

TEST RESULT FROM TRAINING ON THE MIT-BIH AF DATABASE

Fig. 6. Classification results from fivefold cross-validation on the MIT-BIH
AF database.

When using multiple AF features and the SVM method,
Acc, Se, Sp were 95.95%, 95.82%, and 96.09%, respectively,
from the 30-s episode analysis, and Acc was 93.07% for the
10-s episode (Se 94.04% and Sp 92.09%).

Since CNN can output the predictive probability for each
sample, we added it to the same SVM. This model is
called Augmented SVM, which achieved the highest accuracy.
Herein, Acc, Se, Sp were 97.87%, 97.91%, and 97.82%,
respectively, from 30-s episode analysis, and were 96.09%,
96.14%, and 96.02%, respectively, from the 10-s episode
analysis.

2) Test Results From Training on the MIT-BIH AF Data-
base: Table III shows the test results from training on the
MIT-BIH AF database. The model that additionally added
CNN prediction to the same SVM achieved the highest
accuracy.

The trained model was tested on the PhysioNet/CinC Chal-
lenge 2017 database, achieving Acc of 93.21%, Se of 93.70%,

Sp of 92.73% for 30 s and Acc of 93.03%, Se of 89.25%, Sp of
96.80% for the 10 s ECG episodes.

When tested on the CPSC 2018 database, for 30-s ECG
episodes, Acc, Se, and Sp were 98.48%, 98.48%, and 98.48%,
respectively. For the 10-s ECG episodes, Acc, Se, and Sp were
98.61%, 97.67%, and 99.55%, respectively.

On the wearable ECGs from a clinical AF patient, for 30-s
ECG episodes, Acc, Se, and Sp were 99.21%, 98.58%, and
99.83% respectively. For the 10-s episode, Acc, Se, and Sp
were 97.04%, 94.58%, and 99.50% respectively.

B. Results From Training on the PhysioNet/CinC Challenge
2017 Database

The algorithms were trained on the PhysioNet/CinC Chal-
lenge 2017 database and tested on the last three databases.
The test results were shown in Table IV. After adding CNN
prediction, SVM achieved the highest Acc.

On the MIT-BIH AF database, for the 30-s ECG episodes,
Acc, Se, and Sp were 96.84%, 94.98%, and 98.83%, respec-
tively. For the 10-s ECG episodes, Acc, Se, and Sp were
95.13%, 92.69%, and 97.85%, respectively.

On the CPSC 2018 database, for the 30-s ECG episodes,
Acc, Se, and Sp were 96.21%, 96.97%, and 95.45%, respec-
tively. For the 10-s ECG episodes, Acc, Se, and Sp were
98.45%, 98.33%, and 98.55%, respectively.

On the wearable long-term record, for the 30-s ECG
episodes, Acc, Se, and Sp were 99.08%, 98.67%, and 99.50%,
respectively. For 10-s ECG episodes, Acc, Se, and Sp were
96.43%, 96.36%, and 96.50% respectively.

IV. DISCUSSION

There is no difference in the risk of complications caused
by paroxysmal AF and persistent arrhythmia. Due to the short
onset of the paroxysmal AF from some patients, it needs to be
detected in the dynamic environments during daily life. This
study focused on two types of short-time windows: 30- and
10-s ECG episodes.

A. Performance Comparison of Classification Models

1) CNN Compare to SVM: When used fivefold
cross-validation on the MIT-BIH AF database the classification
results of CNN are worse than SVM on independent
recordings. The test set PhysioNet/CinC Challenge 2017
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TABLE IV

TEST RESULTS FROM TRAINING ON THE PHYSIONET/CINC CHALLENGE 2017 DATABASE

database contains more than 600 AF patients. Test results on
PhysioNet/CinC Challenge 2017 database showed CNN is
worse than SVM. But the CPSC2018 database has 66 samples
for 30-s ECG episodes, CNN test results are slightly better.
It shows that the performance of the CNN model depends on
the diversity of the database. When there are few types of
data in the training set and many types of data in the test set,
the performance of CNN is not as good as that of SVM.

The PhysioNet/CinC Challenge 2017 database as a training
set has many types of data, but the amount is relatively
small. There are 23 recordings on the MIT-BIH AF, and
66 AF samples for 30-s ECG episodes on the CPSC2018.
Test results show the SVM model is better than CNN. But the
CPSC2018 database contains more data types for 10-s ECG
episodes, and the accuracy of the CNN model is better than
the SVM. When the training set contains many types of data,
but the amount is relatively small, the type of test set will
affect the performance of the CNN model.

2) SVM Compare to Augmented SVM: In this study, when
we integrate the CNN model output with the SVM classifier,
the combination of methods can significantly increase AF
recognition accuracy.

When the MIT-BIH database was as the training set,
cross-validation results demonstrated that the Acc of 30-s
episode increased by 1.92% by adding the CNN feature
into SVM. Similarly, the Acc of 10-s episode increased by
3.02%. The test Acc of 30- and 10-s episode increased by
1.61% and 2.08%, respectively, on PhysioNet/CinC Challenge
2017 database. The corresponding test Acc increased by 3.03%
and 5.1% on the CPSC 2018 database. When the wearable
long-term record was tested, achieving an Acc of 99.21% for
30 s and 97.04% for 10-s ECG episodes.

When the PhysioNet/CinC Challenge 2017 database was as
the training set, the test Acc of 30-s episode increased by
1.31% and the test Acc of 10-s episode increased by 2.77%
on the MIT-BIH AF database. Similarly, the test Acc increased
by 0.69% and 3.94% on the CPSC 2018 database. When tested
on the wearable long-term record, achieving an Acc of 99.08%
for 30 s and 96.43% for 10-s ECG episodes. This indicates that
the algorithm is believed to have some potential for clinical
use.

3) Comparison of the ROC: The ROC curve is called
“receiver operating characteristic curve (ROC).” Its ordinate
true positive rate (TPR) represents the probability that AF
samples are predicted to be AF, TPR = 1 − Sensitivity. Its

Fig. 7. ROC from testing on the PhysioNet/CinC Challenge 2017 database.

Fig. 8. ROC from testing on the MIT-BIH AF database.

abscissa false positive rate (FPR) indicates the probability that
non-AF is predicted to be AF. FPR = 1 − Specificity = FP/
(FP + TN). When the TPR is higher, the FPR is lower,
and the area under the ROC curve is larger, the better the
generalization abilities of the model.

Fig. 7 showed when the MIT-BIH AF database was as
the training set, the ROC on the PhysioNet/CinC Challenge
2017 database. Fig. 8 showed when the PhysioNet/CinC
Challenge 2017 database was as the training set the ROC
on the MIT-BIH AF database. It can be seen that the SVM
model has better generalization ability than the CNN model
on the independent database, and the generalization ability of
the augmented SVM model is the best.

The classification results of the SVM are better than the
CNN in the independent recordings, which showed the CNN
is data-driven. Although the AF detector based on RR interval
features and SVM has a certain generalization ability, it is
easy to misjudge other arrhythmia diseases with irregular RR
intervals as AF. Using the predicted probability of CNN as a
new feature can correct the SVM detection algorithm based on
the RR interval, which not only improves the detection Acc of
the model but also improves the generalization ability of the
model. That is because the prediction probability of CNN is
extracted by CNN integrated with the T-F image of the ECG.

Authorized licensed use limited to: Southeast University. Downloaded on January 28,2021 at 07:00:13 UTC from IEEE Xplore.  Restrictions apply. 



MA et al.: INTEGRATION OF RESULTS FROM CNN IN A SVM 2504610

Fig. 9. 10-s original signal and signals under different SNR.

Fig. 10. Test Acc of different SNR on the PhysioNet/CinC Challenge
2017 database.

The T-F image can provide time and frequency information,
RR interval, and P wave information. The information con-
tained is comprehensive, which helped the SVM classifier to
obtain a better classification performance.

B. Model Analysis

1) Robustness Analysis of the Augmented SVM: To check
the robustness of the augmented SVM, we added noise with
different noise ratio (SNR) to the PhysioNet/CinC Challenge
2017 database. The PhysioNet/CinC Challenge 2017 database
comes from dynamic ECG recording environments and there
is some noise in itself. Fig. 9 showed the 10-s original
signal and signals under different SNR. Fig. 10 showed the
test Acc of different SNR on the PhysioNet/CinC Challenge
2017 database. When the SRN is 20 dB, the test Acc is
90.95% for the 30-s ECG episode, which showed our model is
relatively stable. When the SNR is 15 dB, the ECG waveform
between the RR intervals is basically submerged, and the
test Acc is 82.39% for the 30-s ECG episode, which showed
our method has certain antinoise performance and robustness.
When the SRN is 10 dB, the ECG is basically submerged by
noise. At this time, the ECG can basically not be analyzed.

2) Complexity Analysis: In this study, the CNN model
includes a total of 359 176 trainable parameters. The 1-D

Fig. 11. Framework for collecting and analyzing ECGs.

CNN model proposed by Andersen et al. [36] includes a total
of 159 841 trainable parameters, and hence the computational
complexity of this model exceeds 1-D CNN. But the aug-
mented SVM can analyze and classify a 30-s ECG in 0.67s,
and a 10-s ECG in 0.24 s on a GeForce GTX 1660 Ti GPU.
Fig. 11 shows the framework for collecting and analyzing
ECGs. Once the ECGs are collected, they are transformed
into the mobile terminal via Bluetooth and displayed in real-
time. After transmitting to the cloud via WIFI or 4G, our
proposed algorithm analyzes the 10-/30-s ECG in the cloud,
then feedbacks the results back to the mobile app for display.

C. Advantages Over Other Algorithm Models

1) Comparison With Traditional Machine Learning
Algorithms: Compared with traditional machine learning
algorithms, our proposed algorithm improves the classification
Acc and is verified on independent databases. Ladavich and
Ghoraani [10] achieved the detection of AF using P-waves
features, resulting in the performance: Se of 89.37%,
Sp of 89.54% on one beat time window. Andersen et al. [37]
presented an automatic AF detection algorithm based on
inter beat intervals and SVM. Test performed on 30-s ECG
episodes reported the Acc of 96.98%, Se of 94.27%, and
Sp of 98.84% using fivefold stratified cross-validation.
Bruun et al. [38] combined discrete wavelet transform and
HRV, and reported better classification results on 180-s time
window data, the Acc of 98.22%, Se of 96.51%, and Sp
of 99.19% using fivefold cross-validation. Xu et al. [26] used
the combination of MFSWT and CNN to identify 1-s AF
with the Acc of 84.85%, Se of 79.05%, and Sp of 89.99%
using fivefold cross-validation. Solikhah et al. [39] made an
automatic detection of AF adopting statistic features. But its
performance is not good, with an Acc of 84.28% on the 30-s
time window. The above detection algorithms are all trained
and tested with different time windows on the MIT-BIH AF
database. Our algorithm model has improved Acc on the
MIT-BIH AF database. Mohebbi and Ghassemian [40] trained
an SVM-based classifier using linear discriminant analysis.
The performance was evaluated only using 769 episodes as
training sets and 388 episodes as test sets from the MIT-BIH
arrhythmia database, reporting the Se of 99.07%, Sp of 100%,
and positive predictivity of 100%. Martis et al. [41] proposed
automated detection of AF using Naive Bayes and Gaussian
Mixture model classifiers. 1200 normal episodes (from MIT-
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TABLE V

PERFORMANCE OF METHODS TESTED ON THE INDEPENDENT DATABASES

BIH arrhythmia database) and 887 AF episodes (from both
MIT-BIH arrhythmia database and MIT-BIH AF database)
were chosen. This method reported an average Acc of 99.42%
using tenfold cross-validation. This method can only classify
30-min normal beats and 30-min AF beats.

Besides, AF features based on AF detection algorithms
were developed by contestants on the PhysioNet/CinC Chal-
lenge 2017. Athif et al. [42] trained an AF/non-AF classifier
using morphological features, statistical features, and SVM,
achieving the Se of 77.5%, Sp of 97.9%, and Acc of 96.1%.
Liu et al. [43] extracted 33 features including time-domain
features, entropy features, and frequency features, achieving an
Acc of 87.71% on the validation set. Shao et al. [44] adopted
26 AF features and four features of similarity index between
beats and the decision tree ensemble on the training data set,
ranking equal fifth in the 2017 PhysioNet/CinC Challenge.
Sadr et al. [45] extracted a set of RR intervals features
and processed by a single hidden layer neural network. This
algorithm can provide reference and guidance for dynamic AF
signal recognition algorithms.

2) Comparison With Deep Learning Algorithms: In recent
years, many scholars have used deep learning algorithms to
classify AF. Wang [46] proposed a deep learning approach
based on convolutional and modified Elman neural network to
classify 4-s AF or N, reporting an Acc of 97.4 from tenfold
cross-validation on the MIT-BIH AF database. Zhou et al. [47]
used 1-D CNN to detect 30-s AF and selected 20 056 training
samples and 3122 testing samples on the MIT-BIH AF data-
base, getting an Acc of 99%. Xia et al. [48] used short-term
Fourier transform and stationary wavelet transform to analyze
ECG, and 2-D CNN to detect 5-s AF, achieving the Acc
of 98.29% from tenfold cross-validation on the MIT-BIH
AF database. These models have high classification Acc, but
they have not been tested on independent recordings, and
the generalization ability of the model cannot be proved.
In this article, we divided the MIT-BIH AF database into
fivefold according to the recordings. Each fold is three or four
recordings for testing, leaving 18 or 19 recordings alone for
training. Although the classification is not so high, it shows a
certain generalization ability.

3) Comparison of the Generalization Ability: Table V
shows the performance of methods tested on the indepen-
dent database or separate data. The test performance on
the independent database can reflect the generalization abil-
ity of the model. Aderson et al. [36] tested their methods

on two independent databases, including MIT-BIH arrhyth-
mia database and MIT-BIH NSR database, and test Acc is
87.40%, dropping by about 10%. The AF detector proposed by
Chang et al. [49] reported an Acc of 83.21% on separate data
and 75.60% on the PhysioNet/CinC Challenge 2017 database.
Contrasting with the current literature, the proposed method
achieved an Acc of 93.03% on the PhysioNet/CinC Challenge
2017 database, 98.61% on CPSC2018, and 97.04% on the
wearable long-term record, which implies that the general-
ization ability of our proposed algorithm is better than other
algorithms.

V. CONCLUSION

In this study, we proposed three different methods for the
detection of AF. The first method is a CNN trained on MFSWT
data. The second is an SVM classifier trained on multiple AF
features data. The third method is an SVM trained on the same
feature set but extended by the predictive probability of the
CNN, which outperforms previously proposed methods. For
algorithm evaluation, we selected four databases, including
the MIT-BIH AF database, the PhysioNet/CinC Challenge
2017 database, the CPSC 2018 database, and the wearable
long-term record collected directly from the clinic. We trained
the models on the MIT-BIH AF database (rest ECG recording
environment) and the PhysioNet/CinC Challenge 2017 data-
base (dynamic ECG recording environment), respectively, and
tested them on all the other databases except themselves. The
proposed method reported better performance on independent
test data sets, indicating the proposed method has the potential
for clinical application. However, the proposed algorithm
combines traditional machine learning algorithms and CNN
algorithms, increasing the computational complexity and time
complexity, so it only processes ECG signals in the cloud.
In the next work, we will continue to improve the algorithm.
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