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Abstract: Entropy algorithm is an important nonlinear method for cardiovascular disease detection 
due to its power in analyzing short-term time series. In previous a study, we proposed a new en-
tropy-based atrial fibrillation (AF) detector, i.e., EntropyAF, which showed a high classification ac-
curacy in identifying AF and non-AF rhythms. As a variation of entropy measures, EntropyAF has 
two parameters that need to be initialized before the calculation: (1) tolerance threshold r and (2) 
similarity weight n. In this study, a comprehensive analysis for the two parameters determination 
was presented, aiming to achieve a high detection accuracy for AF events. Data were from the MIT-
BIH AF database. RR interval recordings were segmented using a 30-beat time window. The param-
eters r and n were initialized from a relatively small value, then gradually increased, and finally the 
best parameter combination was determined using grid searching. AUC (area under curve) values 
from the receiver operator characteristic curve (ROC) were compared under different parameter 
combinations of parameters r and n, and the results demonstrated that the selection of these two 
parameters plays an important role in AF/non-AF classification. Small values of parameters r and n 
can lead to a better detection accuracy than other selections. The best AUC value for AF detection 
was 98.15%, and the corresponding parameter combinations for EntropyAF were as follows: r = 0.01, 
n = 0.0625, 0.125, 0.25, or 0.5; r = 0.05 and n = 0.0625, 0.125, or 0.25; and r = 0.10 and n = 0.0625 or 
0.125. 

Keywords: entropy measure; atrial fibrillation (AF); heart rate variability; entropy-based AF detec-
tor 
 

1. Introduction 
Atrial fibrillation (AF) is a one of the most common arrhythmias, and usually refers 

to the rapid and irregular fibrillation of the atrium [1]. AF is an important inducement of 
cardiovascular events such as stroke, heart failure, and sudden death, and has a high mor-
bidity and mortality [2,3]. The incidence of AF is high, and currently ranges from 2% to 
4% adults [4]. However, as the symptoms of AF are always brief and weak or even be 
asymptomatic [5], the diagnosis for AF is relatively difficult, so timely and accurate de-
tection of AF is therefore challenging [6]. 

The commonly used Holter monitor may miss many cases of paroxysmal AF [7], so 
the recently developed wearable and long-term electrocardiogram (ECG) monitoring 
strategies need to have the capability to scan AF and AF-related complications [8,9], which 
will require a more robust AF detector. There are normally two kinds of approaches for 
AF scanning—atrial activity analysis-based and ventricular response analysis-based 
methods [10]. The atrial activity analysis-based method analyses P waves or detects f 
waves in the ECG data [11–13], which requires high quality ECG signals [14]. The 
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ventricular response analysis-based method analyses the irregularity of RR intervals, and 
has a relatively better tolerance for signal quality, and therefore can be more suitable for 
AF scanning in the daily environment. Many AF detectors have been proposed in the past 
few decades, like density histograms [15], Poincaré plot [16], and median absolute devia-
tion [17], as well as various entropy methods [10,18]. 

Entropy refers to the degree of regularity or irregularity in a time series, and many 
AF detectors have been proposed based on entropy methods, such as sample entropy 
(SampEn) [19,20], coefficient of sample entropy (COSEn) [21], and fuzzy measure entropy 
(FuzzyMEn) [10,22]. All of these methods use the Chebyshev distance to quantify the sim-
ilarity of two vectors, and thus have some limitations. First, the Chebyshev distance has 
not been normalized and thus has no upper limit, resulting in uncertainty in the entropy 
values. Second, the Chebyshev distance only considers the maximum distance between 
two vectors, ignoring the detailed distance information. To solve these problems, a range 
function was proposed by Omidvarnia et al. in a new defined range entropy (RangeEn) 
[23]. In a previous study, we combined the concepts of range function and the advantages 
of COSEn and FuzzyMEn, and thus proposed an entropy-based AF detector, named En-
tropyAF [24], which has a better discrimination ability for identifying the AF rhythm from 
the normal sinus rhythm, for both the MIT-BIH AF database and the clinical wearable AF 
database. 

There are three parameters that need to be initialized in the EntropyAF calculation: (1) 
embedding dimension m, (2) tolerance threshold r, and (3) similarity weight n. Parameter 
m determines the length of vectors to be compared, parameter r is a distance threshold for 
accepting similar patterns between two vectors, and parameter n is a weight for similarity. 
Parameter m depends on the length of time series, and in the current study, as the RR 
interval time series for the AF rhythm analysis is limited to 30 RR interval segments, pa-
rameter m was set as 1 according to the previous recommendation [21]. So, how to choose 
the two remaining parameters r and n is a problem that needs to be solved urgently. This 
study addressed the issue and tested the effect on different combinations of the two pa-
rameters on the accuracy of detecting the AF rhythm. The test was performed on an open-
access MIT-BIH AF database in order to determine the optimal parameter combination. 

2. Methods 
2.1. Data 

All data used were from the MIT-BIH AF database, which included 25 long-term 
ECG recordings, with the detailed QRS position and beat annotation files. Each of the re-
cordings was 10 h, and the rhythm annotations were given from the original MIT-BIH AF 
database, with the expert manual review for verifying four types of rhythm changes: AF 
(atrial fibrillation), AFL (atrial flutter), J (AV junctional rhythm), and N (used to indicate 
all other rhythms). Each recording included multiple rhythm segmentations, which are 
named rhythm episodes herein. The rhythm episodes corresponding to the four rhythm 
types (AF, AFL, J, and N) were extracted from all 25 recordings, and their number and 
duration information are shown in Table 1, as well as the corresponding number infor-
mation of RR intervals. In addition, a 30-beat window length (i.e., 30 RR intervals) was 
used to segment the rhythm episode without overlap, generating the corresponding RR 
segments. Table 1 also shows the number of RR segments after the segmenting proce-
dures. From Table 1, it is worth noting that the 30-beat RR segments, whether in AF 
rhythm and N rhythm (42.6% vs. 54.3%), or in AF rhythm and non-AF rhythm (42.6% vs. 
57.4%), reported a nearly 1:1 balanced distribution. 
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Table 1. MIT-BIH AF database profiles for different rhythm types. For each rhythm type, the numbers and the correspond-
ing percentages (%) are given. (# means the number of) 

Variable AF Rhythm 
Non-AF Rhythm 

N AFL J Total 
# rhythm episodes 299 (48.0%) 292 (46.9%) 14 (2.2%) 18 (2.9%) 324 (52.0%) 

Total time length (h) 93.5 (37.5%) 149.1 (59.8%) 1.4 (0.6%) 5.2 (2.1%) 155.7 (62.5%) 
# RR intervals 521,415 (42.6%) 663,202 (54.2%) 11,710 (1.0%) 26,818 (2.2%) 701.730 (57.4%) 
# RR segments  17,247 (42.6%) 21,968 (54.3%) 383 (0.9%) 886 (2.2%) 23,237 (57.4%) 

2.2. EntropyAF Method 
For an RR time series 𝑥(𝑖) (1 ≤ 𝑖 ≤ 𝑁), first form the vector sequences 𝑋  (1 ≤ 𝑖 ≤𝑁 − 𝑚): 𝑋 = 𝑥(𝑖), 𝑥(𝑖 + 1), ⋯ , 𝑥(𝑖 + 𝑚 − 1)  (1)

where the vector 𝑋  represents 𝑚 consecutive 𝑥(𝑖). 
The distance between vector sequences 𝑋  and 𝑋  is normalized and defined as 

follows: 𝑑𝑋 , = 𝑑 𝑋 , 𝑋= max |𝑥(𝑖 + 𝑘) − 𝑥(𝑗 + 𝑘)| − min |𝑥(𝑖 + 𝑘) − 𝑥(𝑗 + 𝑘)|max |𝑥(𝑖 + 𝑘) − 𝑥(𝑗 + 𝑘)| + min |𝑥(𝑖 + 𝑘) − 𝑥(𝑗 + 𝑘)| + 𝜀 (2)

where 𝜀 is a small positive number to avoid the possible denominator of 0. Then, we 
calculate the similarity degree 𝐷𝑋 , (𝑛, 𝑟) between the vectors 𝑋  and 𝑋  by a fuzzy 
function 𝑢𝑋 𝑑𝑋 , , 𝑛, 𝑟 , defined as follows:  

𝐷𝑋 , (𝑛, 𝑟) = 𝑢𝑋 𝑑𝑋 , , 𝑛, 𝑟 = exp − 𝑑𝑋 ,𝑟  (3)

where 𝑛 is the similarity weight and 𝑟 is the tolerance threshold. 
We define the functions 𝐵𝑋 (𝑛, 𝑟) as follows: 

𝐵𝑋 (𝑛, 𝑟) = 1𝑁 − 𝑚 ( 1𝑁 − 𝑚 𝐷𝑋 , (𝑛, 𝑟)) (4)

𝐵𝑋 (𝑛, 𝑟) measures the mean similarity degrees for the vectors at dimension 𝑚. 
Similarly, we define the functions of mean similarity degrees 𝐴𝑋 (𝑛, 𝑟) for dimension 𝑚 + 1 as follows: 

𝐴𝑋 (𝑛, 𝑟) = 1𝑁 − 𝑚 1𝑁 − 𝑚 𝐷𝑋 , (𝑛, 𝑟)  (5)

Then, we use a density-based estimation, rather than a probability-based estimation, 
to generate a quadratic fuzzy AF entropy using the volume of each matching region, i.e., (2𝑟) , as follows:  𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −ln 𝐴𝑋 (𝑛, 𝑟) (2𝑟)⁄𝐵𝑋 (𝑛, 𝑟) (2𝑟)⁄ = −ln 𝐴𝑋 (𝑛, 𝑟)𝐵𝑋 (𝑛, 𝑟) + 𝑙𝑛(2𝑟) (6)

We also subtract the natural log of the mean RR interval as follows: 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −ln 𝐴𝑋 (𝑛, 𝑟)𝐵𝑋 (𝑛, 𝑟) + 𝑙𝑛(2𝑟) − ln (𝑅𝑅 ) (7)

where 𝑅𝑅  is the mean of RR intervals in the current RR segment 𝑟 and 𝑅𝑅  are 
expressed in units of s. 
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As shown in Equation (7), directly subtracting the item of ln (𝑅𝑅 ) is arbitrary. 
Lastly, we use a weight to optimize the effect of mean RR interval on the final entropy 
output, as follows: 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −ln 𝐴𝑋 (𝑛, 𝑟)𝐵𝑋 (𝑛, 𝑟) + 𝑙𝑛(2𝑟) − 𝑤 × ln (𝑅𝑅 ) (8)

where 𝑤 is a weight for optimization, and is set as 𝑤 = 0.8 from our previous study [24]. 

2.3. Parameter Test 
Data pre-processing was previously performed on the classified RR episodes. We 

first segmented the RR intervals into RR segments with a 30-beat window length without 
overlap. Classification was performed between AF and non-AF rhythm types, the RR seg-
ments corresponding to the N, AFL, and J types were merged as non-AF rhythms. The 
classifier accuracy was assessed via area under curve (AUC) values from the receiver op-
erator characteristic curve (ROC). The ROC curve was a plot of (𝑆𝑒) versus (1 − 𝑆𝑝) for 
many possible values, which varied from the minimum to the maximum of the entropy 
outputs, with a step of 1% of the range. Here, 𝑆𝑒 means sensitivity: 𝑆𝑒 = TP/(TP + FN), 𝑆𝑝 means specificity: 𝑆𝑝 = TN/(TN + FP), where TP, TN, FP, and FN are the numbers of 
true positives, true negatives, false positives, and false negatives, respectively. 

The EntropyAF value was calculated under different parameter settings. The criterion 
for achieving maximal ROC was used for optimizing the parameters r and n. In addition, 
the selection of m might depend on the time series length N and, as suggested from the 
previous studies [25–28], parameters m and N should meet the requirement of 𝑁 ≈10 ~10 . Thus, the embedding dimension m was set as 1 due to the short RR segments 
(30 RR intervals length). 

To present the results, histograms of the EntropyAF values were firstly plotted to form 
a straightforward observation under the representative parameter combinations. Then, 
the overview of AUC results for classifying AF and non-AF rhythm types was presented. 
Finally, an inferential analysis of the effect of parameter combination on the entropy out-
put was conducted using an in-depth analysis of the vector distance calculation in Entro-
pyAF. 

3. Results 
3.1. Classification Results with Different Parameter Combinations 

Figures 1 and 2 show the histograms of EntropyAF values under different parameter 
combinations, where blue bars indicate AF and orange bars represent non-AF segments. 
Figure 1 shows the results when r is set as 0.05 and n varies from 0.125 to 4. We can observe 
that the distribution of EntropyAF values for AF and non-AF segments separates differ-
ently when using different n values. The separation between the two groups with small 
values (n = 0.125 or 0.5) is more visually obvious than that with large values (n = 2 or 4), 
indicating the different classification abilities of EntropyAF measurement when using dif-
ferent parameter combinations. These differences were quantitatively evaluated by the 
AUC metric as follows: 98.15% for n = 0.125, 98.08% for n = 0.5, 94.11% for n = 1, 82.94% 
for n = 2, and 78.06% for n = 4. Figure 2 shows the results when n is set as 0.125 and r varies 
from 0.05 to 0.9. We can still observe that the distribution of EntropyAF values for AF and 
non-AF segments separates differently when using different r values. The separation be-
tween the two groups with a small value (r = 0.05) is still more visually obvious than that 
with a large value (r = 0.9), quantitatively confirmed by the different AUC values, as fol-
lows: 98.15% for r = 0.05 or 0.1, 97.95% for r = 0.2, 93.93% for r = 0.5, and 88.27% for r = 0.9. 
These two figures indicate that EntropyAF can distinguish AF from non-AF rhythms better 
when the parameters of n and r have small values. 
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Figure 1. Histogram of EntropyAF values under different parameters: (A) n = 0.125, r = 0.05; (B) n = 0.5, r = 0.05; (C) n = 1, r 
= 0.05; (D) n = 2, r = 0.05; and (E) n = 4, r = 0.05. The x-axis presents the EntropyAF values and the y-axis presents the number 
of 30-beat segments. 
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Figure 2. Histogram of EntropyAF values under different parameters: (A) n = 0.125, r = 0.05; (B) n = 0.125, r = 0.1; (C) n = 
0.125, r = 0.2; (D) n = 0.125, r = 0.5; and (E) n = 0.125, r = 0.9. The x-axis presents the EntropyAF values and the y-axis presents 
the number of 30-beat segments. 

Table 2 gives an overview of the AUC results for classifying AF and non-AF rhythm 
types under different parameter combinations. The tolerance threshold r was set from 0.05 
to 0.95, with a step of 0.05. In addition, two edge values of r = 0.01 and 0.99 were also tested 
as the optimal AUC value was found on the edge with small r and n values. The similarity 
weight n was set as 2 , and K varied from −4 to 4, with a step of 1, i.e., n had the following 
values: 0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, and 16. Figure 3 shows the AUC results of 3D color 
diagram for the space of scanned r and n. The optimal AUC value appeared on the edge, 
under the condition of the small tolerance threshold r and similarity weight n. The AUC 
value had a maximum of 98.15% (marked as bold) when the parameter combinations were 
set as r = 0.01 and n varied from 0.0625 to 0.5; r = 0.05 and n varied from 0.0625 to 0.25; and 
r = 0.10 and n varied from 0.0625 to 0.125. When the two parameters increased, the AUC 
values decreased, which indicates the decreased detection capability for the AF rhythm. 

Table 2. AUC results for AF detection under different parameter combinations (beat window = 30). 

 n 
r 

0.0625 0.125 0.25 0.5 1 2 4 8 16 

0.01 98.15% 98.15% 98.15% 98.15% 97.87% 88.78% 79.81% 76.37% 71.06% 
0.05 98.15% 98.15% 98.15% 98.08% 94.11% 82.96% 78.06% 73.30% 67.94% 
0.10 98.15% 98.15% 98.12% 97.28% 90.38% 80.86% 76.36% 71.39% 66.30% 
0.15 98.13% 98.10% 97.91% 95.89% 87.72% 79.42% 74.99% 70.05% 65.33% 
0.20 98.06% 97.95% 97.40% 94.36% 85.72% 78.27% 73.91% 69.07% 64.74% 
0.25 97.85% 97.60% 96.64% 92.77% 84.13% 77.38% 73.11% 68.43% 64.42% 
0.30 97.47% 97.07% 95.74% 91.22% 82.84% 76.71% 72.52% 68.03% 64.31% 
0.35 96.96% 96.41% 94.76% 89.85% 81.83% 76.21% 72.13% 67.81% 64.39% 
0.40 96.35% 95.66% 93.66% 88.66% 81.06% 75.86% 71.88% 67.76% 64.57% 
0.45 95.68% 94.83% 92.58% 87.59% 80.45% 75.60% 71.73% 67.80% 64.81% 
0.50 94.92% 93.93% 91.59% 86.63% 79.96% 75.41% 71.68% 67.89% 65.10% 
0.55 94.11% 93.05% 90.69% 85.79% 79.59% 75.29% 71.66% 68.05% 65.40% 
0.60 93.31% 92.23% 89.85% 85.04% 79.26% 75.20% 71.68% 68.24% 65.73% 
0.65 92.56% 91.46% 89.07% 84.37% 79.01% 75.14% 71.74% 68.45% 66.06% 
0.70 91.86% 90.77% 88.34% 83.80% 78.79% 75.10% 71.82% 68.65% 66.38% 
0.75 91.21% 90.10% 87.65% 83.31% 78.60% 75.08% 71.91% 68.86% 66.69% 
0.80 90.59% 89.45% 87.03% 82.87% 78.44% 75.09% 71.99% 69.07% 66.99% 
0.85 90.02% 88.84% 86.43% 82.50% 78.32% 75.09% 72.09% 69.28% 67.28% 
0.90 89.45% 88.27% 85.90% 82.14% 78.19% 75.10% 72.20% 69.48% 67.57% 
0.95 88.90% 87.92% 85.42% 81.82% 78.11% 75.11% 72.30% 69.69% 67.84% 
0.99 88.49% 87.31% 85.06% 81.62% 78.03% 75.14% 72.39% 69.83% 68.05% 
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Figure 3. AUC results of the 3D color diagram for the space of scanned r and n. 

3.2. Inferential Analysis from the Calculation of Vector Distances 
The distance between vectors was calculated using the ranged function, as shown in 

Equation (2). As m is set as 1, 𝑑𝑋 ,  is always 0, and thus the vector similarity degree 𝐷𝑋 , (𝑛, 𝑟) in Equation (3) and 𝐵𝑋 (𝑛, 𝑟) in Equation (4) is always equal to 1. So, the 
value of EntropyAF only depends on the vector similarity degree when dimension m in-
creases to 𝑚 + 1, and the equation is as follows:  𝑑𝑋 , = 𝑑 𝑋 , 𝑋= max |𝑥(𝑖 + 𝑘) − 𝑥(𝑗 + 𝑘)| − min |𝑥(𝑖 + 𝑘) − 𝑥(𝑗 + 𝑘)|max |𝑥(𝑖 + 𝑘) − 𝑥(𝑗 + 𝑘)| + min |𝑥(𝑖 + 𝑘) − 𝑥(𝑗 + 𝑘)| + 𝜀 (9)

Herein, each vector 𝑋  only includes two consecutive RR intervals. It is important 
to explore how the change in the two vector elements influences the entropy output. Fig-
ures 4–6 demonstrate this exploration, where we simply mark these two vectors 𝑋  
and 𝑋  as 𝑥  and 𝑥 , respectively. 
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Figure 4. Demonstration of 𝑑𝑋 , = 0 when two elements are on the lines of (A) y = x + a or (B) y 
= −x + a. 
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Figure 5. Demonstration of 𝑑𝑋 , = 1 when two elements are on the lines of (A) y = a or (B) x = a. 
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Figure 6. Trend of vector distance with the change of the vector angle. 
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From Equation (9), when the two vectors 𝑥  and 𝑥  are on the lines as shown in Fig-
ure 4 (at an angle of 45 degrees to x-axis, y = x + a or y = −x + a, where a is a constant), 𝑑𝑋 ,  will be 0. When the two vectors 𝑥  and 𝑥  are on the lines as shown in Figure 5 
(on or parallel to the x-axis or y-axis, y = a or x = a, where a is a constant), then 𝑑𝑋 ,  will 
be 1. Figure 6 shows the trend of vector distance with the change of vector angle, i.e., when 
vector angle changes from 45 degrees to 0 degrees with the x-axis or y-axis, the vector 
distance changes from 0 to 1. 

We randomly selected 1000 30-beat segments for the AF and N rhythms each, and 
further calculated the vector similarity degree 𝐷𝑋 , (𝑛, 𝑟) as defined in Equation (3). Fig-
ures 7 and 8 show the vector similarity degree (𝐷𝑋 , ) histograms for AF and N rhythm 
segments under different parameters of n. The raw vector similarity degree distribution 
could be observed when n = 1, as it did not have the effect from the power of n, i.e., 𝑑𝑋 , . When the power of n was employed to the vector similarity degree (𝐷𝑋 , ), 
the distribution of the histogram changed accordingly. As shown in Figures 7 and 8, the 
raw vector similarity degree (𝐷𝑋 , ) had a nearly uniform distribution for both the AF 
and N rhythms. When applying a small value of power n (𝑛 < 1), the vector similarity 
degree was enlarged due to the 𝑑𝑋 , . So, we can observe the vector similarity degree 
distribution slope to the right, except for the original vector similarity degree of 0. The 
opposite situation can be observed when employing a large value of power (𝑛 > 1). 

 
Figure 7. Vector similarity degrees histogram of the AF rhythm. (A) n = 0.125; (B) n = 0.25; (C) n = 0.5; (D) n = 1; (E) n = 2 
and (F) n =4. 
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Figure 8. Vector similarity degrees histogram of the N rhythm. (A) n = 0.125; (B) n = 0.25; (C) n = 0.5; (D) n = 1; (E) n = 2 
and (F) n =4. 

The entropy value was mainly determined by two factors: (1) the vector similarity 
degree distribution and (2) the vector similarity judgement rule. From Figures 7 and 8, we 
can see that a small power of n can separate the zero and non-zero vector similarity degree, 
and then a small threshold for r can further easily separate the vectors into similar or un-
similar classes. Thus, we obtained a good performance for the entropy measure to classify 
AF rhythms. Therefore, we obtained a better classification effect when using a parameter 
combination of n and r with small values. 

Figure 9 shows the cumulative distribution function (CDF) for vector similarity de-
grees for the AF and N rhythm segments when using different parameters of n. We can 
observe that the small parameter of n gave more selections for threshold r to distinguish 
the two rhythm types (AF and N). When using n = 0.125, the two rhythm types remained 
in separated curves from each other within a large range of similarity degrees, i.e., a range 
of 0 < 𝑟 < 0.6 could be used to classify the two groups with a high possibility. This in-
ference was confirmed by the quantitative analysis of the AUC metric, as shown in Table 
2. When using n = 0.125, AUC retained high values of 98.15%, 97.95%, 97.07%, and 95.66% 
for r = 0.1, 0.2, 0.3, and 0.4, respectively. However, when adding parameter n, selections 
of threshold r to distinguish the two rhythm types decreased. When using n = 0.25, the 
AUC value decreased to 93.66% for r = 0.4. When using n = 0.5, the AUC value further 
decreased to 88.66% for r = 0.4. 
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Figure 9. Cumulative distribution function (CDF) for vector similarity degrees. (A) n = 0.125; (B) n 
= 0.25; (C) n = 0.5; (D) n = 1; (E) n = 2 and (F) n =4. 

These differences in the cumulative distribution function of vector similarity degrees 
could cause differences in entropy values, as shown in Figures 1 and 2. In Figure 1, pa-
rameter r was set as a fixed value of 0.05, leaving the opportunity to observe the effect of 
parameter n on the entropy outputs. When n had s small value of 0.125, 0.25, and 0.5, as 
shown in Figure 9, the cumulative distribution function of the vector similarity degrees 
from the two types were different, thus the entropy values were significant different (see 
Figure 1A−C), demonstrated by the AUC values of 98.15%, 98.15%, and 98.08%, respec-
tively (Table 2). As parameter n increased, the value of EntropyAF for the AF and N 
rhythms both decreased, as shown in Figure 1, sd the increased n generated the shrinkage 
of 𝑑𝑋 ,  as shown in Equation (3) and the diminished 𝑑𝑋 ,  induced the decrease 
of entropy values. However, the entropy values in the AF rhythm changed more rapidly 
than those in the N rhythms. Thus, when n increased to 4, the two groups almost merged 
with each other entirely, resulting in a difficult distinguishment between two groups (see 
Figure 1E), demonstrated by an AUC value of 78.06% (Table 2). 
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In Figure 2, parameter n remained a fixed value of 0.125, and the parameter r in-
creased from 0.05 to 0.9. As demonstrated in Figure 1, the parameter combination of n = 
0.125 and r = 0.05 obtained a high AUC value of 98.15%. When parameter r increased, it 
increased the value of 𝑙𝑛(2𝑟), as shown in Equation (8), and thus generated an increase in 
EntropyAF. In contrast, the value for the non-AF rhythm changed more rapidly than that 
of the AF rhythms, and when r = 0.9, the two groups were merged with a large proportion, 
resulting in a low AUC value of 88.27%. Therefore, we concluded that when parameters 
n and r were both small, the entropy value distributions separated from each other very 
obviously, and thus EntropyAF had a better capability for AF detection. 

4. Discussion and Conclusions 
This study aimed to analyze the influence of different parameters’ values on Entro-

pyAF for AF identification, and to determine the effective combination for parameters r 
and n in order to obtain a good recognition effect. 

The determination of entropy parameters plays an important role in the entropy cal-
culation and the physiological signal analysis [25]. Generally, the recommended parame-
ters are as follows: embedding dimension m = 1 or 2 according to the length of RR seg-
ments, threshold r is between 0.1 and 0.25 times the standard deviation (SD) of the time 
series [26,27], and data length of N (varied in different situations) [28–31]. In this study, N 
was set as 30 and m was set as 1, because of the small value of N, i.e., as m and N were 
suggested to meet the requirement of 𝑁 ≈ 10 ~10  from the previous studies [25–28]. 
We focused on the other two parameters, tolerance threshold r and similarity weight n, 
where n is the similarity weight in the fuzzy-entropy-based calculation [24,32]. 

It is worth noting that we used m = 1 in the current study due to the short RR seg-
ments (30 RR interval length). From the calculation process of entropy, as shown in Equa-
tions (1)–(8), m = 1 induced the reconstructed vector 𝑋  and only included one element. 
So, the distances between two vectors, 𝑋  and 𝑋 , could not be quantified in Equation 
(2) and were defined as 0, and the similarity degree 𝐷𝑋 , (𝑛, 𝑟) was always equal to 1. 
Thus, the value of EntropyAF was dependent on the vector distances when the embedding 
dimension increased to m + 1 = 2, i.e., from the comparison between two vectors, 𝑋  
and 𝑋 . Figures 7 and 8 show the variation trends of the vector similarity degree 
changed from 0 to 1. When the vector similarity degrees changed to the power of n, the 
similarity degree distribution for both AF and N rhythms also changed. When parameter 
n was small (n = 0.125, 0.25, and 0.5), and the smaller n was, the large similarity degrees 
were more concentrated and separated more obviously with a distance of 0. The variation 
of the similarity degrees led to a change of EntropyAF values for both the AF and N 
rhythms. When r remained a relatively small value (r = 0.05), the distribution of entropy 
value for the AF and N segments separated the most obviously when n = 0.125, and when 
parameter n became larger, the two distribution gradually merged with each other. The 
variation trend was similar to the cumulative distribution function of vector similarity 
degrees: the two curves for the AF and N segments separated with each other when n was 
small (n = 0.125), and as n increased, the length of separation from similarity degree 0 for 
the two curves became shorter. Except for the affection brought from parameter n, param-
eter r also had an impact on EntropyAF values. When n was set to a constant value (n = 0.5), 
the distribution of entropy values for AF and N segments also changed as r increased—
from obviously separated (r = 0.05) to almost merged with each other (r = 0.6). 

Another interesting issue is whether the RR interval segments should have been 
resampled as the cardiac cycle was inherently irregularly spaced in time, and thus gener-
ated an unevenly sampled RR interval time series. Usually, spectral estimates of the heart 
rate variability (HRV) often use an evenly sampled time series to perform the calculation 
of the frequency analysis method, such as fast Fourier transform (FFT) and wavelet anal-
ysis [33]. Clifford and Tarassenko proved that resampling generated an over-estimation 
of the power spectral density (PSD) and thus decreased the accuracy of the PSD estimation 
[34]. Kantelhardt et al. also suggested the use of an unevenly sampled RR interval time 
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series, as resampling and the following interpolation could induce artifacts [35]. Thus, 
although the potential bias exists, the frequency-based method has a need for even sam-
pling in order to perform the implementation of FFT and wavelet analysis. However, in 
the current study, we did not involve the frequency analysis for RR interval segments, 
and only focused on the distance calculation between different RR intervals. So, we kept 
the unevenly sampled RR intervals to avoid the potential bias due to resampling. 

The results show that small r and n values can make the separation of EntropyAF val-
ues for the distribution of AF and non-AF segments more obvious, and can improve the 
detection capability of EntropyAF for the AF rhythm. The best combinations of the two 
parameters to identify the AF rhythms were as follows: r = 0.01, n = 0.0625, 0.125, 0.25, or 
0.5; r = 0.05 and n = 0.0625, 0.125, or 0.25; and r = 0.10 and n = 0.0625 or 0.125. 
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