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Abstract
Objective. This study aimed to prove that there is a sudden change in the human physiology system
when switching fromone sleep stage to another and physical threshold-based sample entropy
(SampEn) is able to capture this transition in anRR interval time series frompatients with disorders
such as sleep apnea.Approach. Physical threshold-based SampEnwas used to analyze different sleep-
stage RR segments from sleep apnea subjects in the St. Vincents UniversityHospital/University
CollegeDublin Sleep ApneaDatabase, and SampEn differences were compared between two
consecutive sleep stages. Additionally, other standard heart rate variability (HRV)measures were also
analyzed tomake comparisons.Main results. Thefindings suggested that the sleep-to-wake transitions
presented a SampEn decrease significantly larger than intra-sleep ones (P<0.01), which out-
performed other standardHRVmeasures.Moreover, significant entropy differences between sleep
and subsequentwakefulness appearedwhen the previous sleep stage was either S1 (P<0.05), S2
(P<0.01) or S4 (P<0.05). Significance. The results demonstrated that physical threshold-based
SampEnhas the capability of depicting physiological changes in the cardiovascular systemduring the
sleep-to-wake transition in sleep apnea patients and it ismore reliable than the other analyzedHRV
measures. This noninvasiveHRVmeasure is a potential tool for further evaluation of sleep
physiological time series.

1. Introduction

Sleep regulation is a complex physiological process, which presents intricate variability and a nonlinear
autonomic controlmechanism. A group of neuronal interactions between the thalamus and the cortical
network acts as a switch to achieve stable sleep andwakefulness, and the state transition during sleep periods is
related to brain fluctuations aswell as autonomic nerve activities (Somers et al 1993, Saper et al 2005). Sleep
apnea syndrome (SAS) is a breathing disorder that can be interpreted as amomentary shutting of the upper parts
of the human airway during sleep (Ravelo-García et al 2014). Among all types of this disease, obstructive sleep
apnea (OSA) is themost common, characterized by cessations of respiratoryflow for at least 10 s (Strollo and
Rogers 1996). It is widely acknowledged thatOSA leads to asphyxia, hypoxemia and awakenings; thus increasing
the risk of cardiovascular diseases such as hypertension, cardiac arrhythmia, congestive heart failure, acute
myocardial infarction and stroke (Yaggi et al 2005). In this case, understanding sleep regulation during various
stages ismeaningful for sleep apnea diagnosis.

Sleep scientistsmeasure sleep electrophysiologically and the simultaneous recording of electroencephalo-
graphy (EEG), the electrooculogram (EOG) and the electromyogram (EMG) are the accepted standardmeasures
of sleep andwaking, which are termed polysomnography (PSG) altogether (Wolpert 1969). Nevertheless, PSG is
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quite expensive and difficult to operate, and sometimes its application affects the sleep of the trial subjects (Lee
et al 2002). Thus, researchers have turned to uncomplicated and swift sleep-staging evaluationmethods instead.

The literature has demonstrated that sleep stage classification via electrocardiogram (ECG) signals is the
most recent endeavor in the field, and numerous papers have shown that sleep staging depends on ECG-related
parameters (Chriskos et al 2020). The past decades havewitnessed an increasing tendency to apply heart rate
variability (HRV) to analyze ECG signal during sleep as an alternative of EEG, and the correlation betweenHRV
and sleep stage classification has beenwell summarized (Vanoli et al 1995). As awidely used noninvasive
autonomic nerve system (ANS) assessmentmethod,HRV analyzes the interval between consecutive heartbeats,
and research has proven its connectionwith the variation in sleep stages (Telser et al 2004). Given that sleep
stages are classified as wakefulness, two stages of light sleep, two of deep sleep and rapid eyemovement (REM)
sleep, the regulation of the ANS changes with the sleep stages (Parmeggiani 1990). The average heart rate (HR)
falls steadily from thewakefulness to deep sleep, since the latter is vagal-dominant. During REM,which presents
a sympathetic dominance and a significantwithdrawal of vagal activity,HR increases lightly and exhibits greater
variability than duringwakefulness. As amatter of fact, numericalmethods developed for time series analysis of
HRV in healthy aswell as pathological people have already been applied to data from the ECG channel of the
PSG,which allows characterization of various sleep stages bymeans of theHR (Staudacher et al 2005). Among
all theseHRVmeasurements, sample entropy (SampEn) is a promising nonlinear tool, which is highly adaptive
for quantifying the regularity of physiological time series and eliciting valuable information about the
cardiovascular system (Richman andMoorman 2000).

As a representative nonlinear feature, SampEn has been applied inmassive studies for automatic sleep
staging through ECG signals (Ebrahimi et al 2015). However, few people have paid attention to the transition
process between different sleep stages. Since the alternation of sleep stages circulates across the night, specific
physiological functionfluctuates simultaneously, and the alternate point of two sleep stages is likely towitness a
sudden change. Considering that the ANS is tightly coupledwith the brain (Schiecke et al 2019), we assumed that
a SampEn-basedHRVmethod can capture such changes and the change inHRV indexwould not be strictly
synchronouswith that in EEG signals.Moreover, as the basic sleep regulationmechanism is similar in sleep
apnea and healthy subjects (Urbanik et al 2018), it would be reasonable to speculate that the sudden change
during sleep stage transition also exists in sleep apnea individuals. According to its internal structure, a sleep
period can be roughly divided intowake, REM, and non-rapid eyemovement (NREM) stages, andREM sleep is
an intermediate state betweenNREMandwakefulness (Roehrs andRoth 2019), thuswe hypothesized that the
variation in SampEn valuewould bemore obvious in sleep-to-wake transitions than intra-sleep transitions,
especially fromNREMsleep towakefulness.

In previous study, a physical threshold-based SampEnwas put forward to solve the inconsistency of
traditional SampEn in heart failure diagnosis and experiments have verified its superiority in SampEn
calculations (Xiong et al 2019). In this study, we continue to use the physical threshold-based SampEn, as it is
more preferable than the traditional one. The aimof this work is to reveal SampEn change rules during sleep
stage transitions in sleep apnea patients by analyzing the labeled RR interval time series. Since the connection
betweenHRV and EEGduring sleep has beenwell demonstrated, SampEn is capable to depict the changes in
healthy subjects at the onset as well as the offset of the sleep.On that basis, theHRV variation during different
stages for sleep apnea patients is investigated to ensure the adaptability of the SampEn change rules to
pathological individuals. Comparisons between the SampEn values of the former and the latter sleep stageswill
be performed on the selected transition episodes to validate the hypothesis. In order to prove its consistency,
experimental results with the traditional threshold are also presented.

2.Materials andmethods

2.1. Physical threshold-based SampEn is able to capture the transition from sleep towake.
As a typical nonlinearHRVmeasure, SampEn has been applied in numerical studies to explore the
characteristics of sleep.Most research focuses on the discrimination of different sleep stages, where SampEn is
selected as a feature of the RR interval time series during the sleep period. Nevertheless, such analysis does not
fully exploit the potential of entropymeasurement. As detecting the transitions of certain sleep stages has also
been a spotlight in sleep research, we assume that the proposed physical threshold-based SampEn could also
capture these sudden changes.

Sleep is not a homogeneous process, as a long period of nocturnal sleep actually comprisesmany short wake
intervals (Lo et al 2002). Therefore, the complex characteristics of sleep–wake transitionsmight be themost
worth exploring ones regarding the change-point detection during sleep. Among all the sleep–wake transitions
during the total sleep time, the brief awakenings from sleep appear to be random and their durations vary
greatly,making it hard to analyze the transition process (Lo et al 2004).Meanwhile, the transitions at the onset
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point as well as the offset point of nighttime sleep seem to be clearer, as the duration of the neighboring states
remain long enough. Thus, the transitions of sleep onset and offset would be easier to capture.

Although sleep is characterized by sensorimotor disconnection from the environment and altered
consciousness, reducedmuscle activity and interactions, the brain ismetabolically active during sleep, rendering
it themain human organ affected by the process (Siegel 2009). The variations of sleep status are easy to observe
through different frequency components in EEG signals (Chriskos et al 2020). Since complicated factors in the
human body environmentmodulate the couplings between brain and heart, changes in cardiac activity lags
behind the corresponding cortical one (Lueckel et al 2018). Given that sleep andwake are governed by complex
interactions between neurons in the brain, these neurons are thought to act as a ‘latch’ collectively, which
produces stable sleep andwakefulness (Lo et al 2004). In fact, brief arousals and normal wakefulness require
the coordinated active of several wake-promoting cell groups located in the rostral brainstem and posterior
hypothalamus, and neuronal subthreshold voltagefluctuations inwake-promoting neurons are likely the origin
of spontaneous brief arousals during sleep (Dvir et al 2018). Such switching over is presented in the brain
instantaneously, while it appears in the heart relatively late.Hence, we propose that the response of the
cardiovascular system to neurons in the brainwould be similar to a step response with resistance, whichmeans
therewill be an obvious change in the ANSwith a time delay after the switch of the ‘latch’ in theCNS.We also
assume that thewake-to-sleep transition is likely to be a progressive process, while the sleep-to-wake transition
presents a sudden change.

Figures 1 and 2 show the total sleep periods of twohealthy subjects from theMultilevelMonitoring of
Activity and Sleep inHealthy people (MMASH) dataset fromhttp://www.physionet.org (Rossi et al 2020). For
bothfigures, the sleep time series is presented in RR interval or heart rate format in the first two graphs, where
thefirst one is thefiltered time series and the second one is thefilteredHR sequence, and the SampEn results as
well as SampEn differences corresponding to eachRR interval segment are exhibited in the last two graphs. The
blue lines in subplots (A) and (B) represent the 30min time series before sleep onset and after sleep offset,
respectively; the red lines represent the 30min time series after sleep onset and before sleep offset; and the black
line is the in-between sleep period. Thus, there are two stage transitions. The transition fromblue to red is a

Figure 1.Presentation of (A) sleep time series, (B) sleepHR sequence, (C) SampEn results and (D) corresponding SampEn differences
of subject 6 from theMMASHdataset. Herein, embedding dimensionmwas set as 2, physical threshold r=12ms, and segment
lengthN=200.
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wake-to-sleep one and the transition from red to blue is a sleep-to-wake one. In subplots (C) and (D), the
entropy values or entropy differences of these two transitions aremarked in green and the onset as well as the
offset point is plotted by a black dashed line. It is noticeable that the SampEn difference represents the SampEn
of the former RR segmentminus the latter and the total SampEn difference number is one less than the RR
segment number.Herein, the embedding dimensionm=2 and segment lengthN=200. Since the dataset was
sampled by 1000Hz, the physical threshold is set as 20.5 times sampling period, i.e. 20.5ms.

Asfigure 1 implies, there is a progressive increase in SampEn value at the sleep onset and a sudden drop after
the sleep offset point. The baseline SampEn of the total sleep period is higher than that of thewakefulness, and
the transitions between sleep andwake are likely to be the outline of a step response. Furthermore, we can see
that though the change inHR sequence before sleep onset is abrupt, the corresponding change in the SampEn
valuefluctuates, whichmeans that the transition fromwake to sleep is a tortuous process rather than a sudden
change. Nevertheless, the sudden drop in SampEnwith some time delay after sleep offset point illustrates that
the sleep-to-wake transition is an instantaneous change, and the cardiovascular systemwould respond to this
changewith a lag.Moreover, the SampEn differences in subplot (D) reveals that there is a remarkable decrease
near the onset point aswell as an increase near the offset point in the SampEn difference value, while the SampEn
fluctuations during other periods are relatively placid. This demonstrates that the changes in SampEn difference
during the sleep onset and offset periods aremore significant than the periods during sleep.

Infigure 2, the RR interval time series, HR sequence, SampEn results and SampEn differences of another
subject from theMMASHdatabase are shown, andwe can still observe the fluctuations in RR interval as well as
the SampEn value at the sleep onset and offset points, respectively. The RR interval becomes longer, orHR
accelerates when sleep begins, andRR interval shortens, orHRdecelerates when sleep ends, which are clear signs
of sleep onset and offset. However, fluctuations during the sleep process cause confusion. Compared to the
former subject, the changes in RR interval during sleep periods seem to bemore remarkable for the present one,
thus interfering with the judgment of sleep onset and offset. One the other hand, the transition fromwake to
sleep in subject 22 is obviously a process with slow growth, where the entropy differences between adjacent
segments are not so distinct.Meanwhile, the transition from sleep towakewitnesses a drop, and the SampEn

Figure 2.Presentation of (A) sleep time series, (B) sleepHR sequence, (C) SampEn results and (D) corresponding SampEn differences
of subject 22 from theMMASHdataset. Herein, embedding dimensionmwas set as 2, physical threshold r=12ms, and segment
lengthN=200.
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values thereafter remain at a relative low level. The SampEn values present a similar trend to theRR interval time
series orHR, and subplot (D) implies that the corresponding SampEndifference depicts the sleep offset better
than the onset.

Based on thesefindings, we have observed that sleep–wake transitions provoke a lagging step response inHR
variability and SampEnwith physical threshold can be used as an index to depict such transitions. Considering
thatwakefulness ahead of a sleep period is vulnerable to influence by uncertain external factors, wemainly focus
on the sleep-to-wake transition in the following analysis. Additionally, since relevant research has pointed out
that only particular transitions can be detected using certain nonlinearHRVmeasures (Telser et al 2004), the
various stages in sleep need further consideration.

2.2.HRV features of different sleep stages in normal and sleep apnea subjects
According to EEGpattern-based Rechtschaffen andKales (R&K) standards, the sleep process can be categorized
into theREM stage, NREM (S1, S2, S3, S4) and thewake stage (W) (Rechtschaffen andKales 1968). As the ANS
and sleep regulatory systems, namely theCNS, are coupled anatomically and physiologically (Zambotti et al
2018), they play important roles in normal sleep and sleep disturbance, hence cardiovascular function varies
from stage to stage . Themost widely used indicators of ANS activity during sleep areHR andHRV (Otzenberger
et al 1998). Using either time or frequency-domain indexes ofHRV,massive studies have revealed thatHR and
HRVprogressively decrease duringNREMsleep and increase during REM sleep, which is be attributed to
increased vagal control ofHR in theNREMstage and increased sympathetic nerve system (SNS) control during
the REMstage (Zemaityte et al 1984). Entropy-derived nonlinear indices whichmeasure nonlinear features
might be better suited to track theHRV changes associatedwith complicated physiological processes in humans
(Seely andMacklem 2004); thus they also provide unique insights into sleep staging. NREM sleep, and slowwave
sleep (SWS) in particular, presents significantly higher nonlinearHRV compared to REMsleep, which implies
that the RR intervals are less regulated during theNREMperiod (Vigo et al 2010). Besides, REM is similar to a
wake status as regards nonlinearHRV (Virtanen et al 2007).

However, as the S1 inNREM sleep represents the transition betweenwake and sleep (Le Bon 2020), itmight
not be as distinctive as deep sleep (S3 and S4) from theREMperiod. In addition, asNREMandREMalternate in
cycles during thewhole sleep period, the states before wakefulness could vary (Roehrs andRoth 2019).
Therefore, it is reasonable to establish rules that apply to certain types of sleep-to-wake transitions.

Furthermore, sincewe have already presented the sleep–wake transitions of healthy subjects that could be
captured by physical threshold-based SampEn in this paper, wewonder whether such a phenomenon still exists
in sleep disorder subjects like sleep apnea patients. Since apnea occurs several hundred times overnight (Zarei
andAsl 2020), the nocturnal sleep period is disrupted. Research has demonstrated that although sleep apnea
subjects have amore fragmented sleep, which containsmore short stages and transitions than healthy people,
the robustmechanisms of sleep andwakefulness controls do not change (Penzel et al 2003). Spectral analysis
also proves that there is no difference in changes in frequency-domainHRVparameters during different sleep
stages between normal andOSA groups (Stein and Pu 2012). Thus it is reasonable to assume that entropy
measurement can still characterize the stage transitions in sleep apnea.Moreover, as the fragmentation of sleep
inOSA subjects arises from respiratory problems, studying sleep apneamight reveal the effect of external
disturbances on sleep-stage transitions (Ivanov and Lo 2007).

2.3. Experimental design
2.3.1. Data
All data usedwere from the St. Vincent’s UniversityHospital/University CollegeDublin sleep apnea database
fromhttp://www.physionet.org, a free-access, online archive of physiological signals (Goldberger et al 2000).
The sleep apnea database includes overnight polysomnogramswith simultaneous three-channelHolter ECG
taken from25 subjects that have sleep-disordered breathing. The subjects’ age (21males and four females)
ranged from28 to 68 (mean: 49.96±9.55) and their weights ranged from59.8 to 128.6 kg (mean:
95.02±14.70 kg). Three-channel Holter ECGs (V5,CC5, V5R)were recorded using a Reynolds LifecardCF
system (ReynoldsMedical, UK), and a sampling rate of 125Hzwas set for the ECG recordings of this database. In
this experiment, only the ECG signals were used. Classification of the recordingswas done on a 1min basis by
expert scorers according to R&K standards and each segmentwas assignedwith a label (i.e. apnea or non-apnea).
Herein, annotation 0–6 represents wake, REM, stage S1 to S4 inNREMand artifact, respectively.

2.3.2. Physical threshold-based SampEn
Sample entropy (SampEn) is a nonlinearmeasurement of system complexity, which calculates the negative
logarithmof the conditional probability that two sequences within a tolerance r form points remainwithin r of
each other at the next points (Richman andMoorman 2000). According to previous research, SampEnwith a

5

Physiol.Meas. 42 (2021) 044001 XLiang et al

http://www.physionet.org


physical thresholdwas taken as the baseline algorithm in this study. The calculation process of physical
threshold-based SampEn is summarized as follows (Richman andMoorman 2000, Zhang et al 2007):

For RR segment x(i) (1�I�N), given the parametersm and r,first form the vector sequencesXm i:

= + + - - X x i x i x i m i N m, 1 , , 1 1 . 1i
m { ( ) ( ) ( )} ( )

The vectorXmi representsm consecutive x(i) values. Then the distance betweenXmi andXm j based on the
maximumabsolute difference is defined as
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For eachXmi, denoteBmi(r) as (N−m)−1 times the number ofXm j (1�j�N−m) thatmeets dmi, j�r.
Similarly, setAm

i (r) as (N−m)−1 times the number ofXm+1 j thatmeets dm+1
i, j �r for all 1�j�N−m.

Typically, the recommended threshold r is between 0.10 and 0.25 times standard deviation (SD) (Pincus 2001).
Nevertheless, when applied to heart failure detection, normal sinus rhythm (NSR) group presented higher
SampEn results than those in the congestive heart failure (CHF) groupwhen rwas set to 0.10, while the outcomes
reversed as r increased to 0.25 (Zhao et al 2015). The inverted entropy resultsmake it hard to establish a unified
standard to detect CHF subjects with a constant r value. To avoid such inconsistency, we proposed a physical
threshold asmultiple of sampling period and proved that it ismore adaptive toCHFdetection than the
traditional threshold (Xiong et al 2019). As physiological signals were sampled at a specific frequency, the
minimal time resolution of the signals was determined by the sampling rate and the distance between two vectors
ought to be an integralmultiple of the sampling period. Therefore, the physical threshold set as amultiple of the
sampling period is able to evaluate any vector distance. On the other hand, although the physiological signals are
of the same type, they vary from individual to individual. Thismeans that the SD value of each analyzed signal
segment differs greatly. As a consequence, the traditional threshold varies and itmight be smaller than the
minimal vector distance or larger than themaximal one, which leads to invalid entropy values in the calculation.
However, the proposed physical threshold can avoid such problems, and it remains effective in cardiovascular
signal processing, thuswe continued to use this threshold. In this study, since the signals were sampled at 125Hz
and the sampling periodwas 8ms, we set threshold r as 2.5 times sampling period, which equals 20ms.

Then SampEn is defined by
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Herein, we predefined another parameter in the calculation of entropymetrics: embedding dimensionm=2,
aiming to avoid inefficient entropy results caused by a relatively largem.We also selected the time series lengthN
to be 200 to capture the transient sleep stage changes, where the effectiveness of the SampEn analysis can still be
guaranteed (Pincus andHuang 1992).

It is worth noticing that the SampEn difference we used in this research is defined as

= - +SampEn difference SampEn n SampEn n 1 . 4( ) ( ) ( )

Herein, n is the order inwhich the entropy value appears in the time series. This setting differs from the general
concept, where difference refers to SampEn(n+1) – SampEn(n). However, this ismerely an opposite
description of the changes in SampEn value.When applying the general idea of SampEn difference, thenwe can
say there is an increase in SampEn value during the sleep-to-wake transition.

2.3.3. Experiment scheme
The analytical procedure used in the present study contains fivemajor steps: (1) pre-processing of each ECG
interval recording; (2) calculating SampEn for each labeled RR segment and comparing the results; (3)
calculating the SampEn difference between the twoRR segments before and after state transition and comparing
the results of sleep-to-wake transitions and intra-sleep transitions; (4) selecting transition episodes according to
stage transition points andfiltering out thosewith insufficient sleep as well as wakefulness time, calculating
SampEn for the preserved episodes and analyzing the effect of refinement; (5) assessing the SampEn differences
of the refined sleep-to-wake transition episodes arising from various sleep stages.

In step (1), the Pan–Tomkins algorithmwas applied to the rawECG signals to detect Rwaves (Pan and
Tompkins 1985) and the obtained RR intervals with abnormal values were then removed (Ho et al 1997).
For each set offive contiguous RR intervals, we computed the localmean excluding themedian interval:
RRmean[i]=(RR[i-2]+RR[i-1]+RR[i+1]+RR[i+2])/4. The central intervalRR[i] is considered to be an outlier
unless it lies within a 20% interval aroundRRmean[i], i.e. 0.8×RRmean[i]<RR[i]<1.2×RRmean[i].Moreover,
RR intervals either smaller than 0.5 s or larger than 1.5 s were also regarded as outliers. Any interval identified as
an outlier was removed, and a newRR interval time series was rebuilt with the remaining RR intervals. The RR
interval recordings andRR interval numbers before and after filtering are shown in thefirst part of table 1.
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In step (2), SampEnwas used to calculate the entropy values for all the sleep apnea subjects under the
parameter setting embedding dimensionm=2 and physical threshold r=20ms. Sincewe aimed to capture
the change in a relatively short time period, segment lengthN=200was used to analyze SampEn. For eachRR
segment, we removed theRR intervals without a 99%confidence interval (CI), (i.e.±3×SD). The state label of
eachRR segmentwas determined by the dominant labels within the 200 points. Thus eachRR segment has its
own label, and the entropy results were compared amongwake, REM, S1, S2, S3 and S4 stages. The numbers of
total RR segments as well as RR segments fromdifferent sleep stages are listed in the second part of table 1.

In step (3), we analyzed the SampEn difference of the two consecutive RR segments with different labels to
evaluate nonlinearHRV features after a state switch.Herein, we classified the transitions into two types: sleep-
to-wake transitionwhere the former stage is either REMorNREMand the latter one is wakefulness; and intra-
sleep transitionwhere both former and latter periods arewithin REMandNREMstages.We assumed that a
sleep-to-wake transitionwould present amore distinct change in SampEn than the intra-sleep one and the
comparison between these two transitionswas then implemented. The numbers of these two types of transitions
are also presented in the second part of table 1.

In step (4), a refinement strategywas applied to improve the assessment of transition period. Instead of
roughly deciding the state of a 200-point RR segment by themajority of the labels, wefirst located the change
point where the physiological state of the subject has switched from sleep towakefulness. Thus a transition
episodewas gained by taking the 200 points before and after this change point. To analyze SampEn under a
uniform and stable condition, it is necessary to assure that both the sleep andwakefulness periods involved a
sufficient time duration. Therefore transition episodeswith either a sleep stage lasting less than 200 points or
wakefulness lasting less than 100 pointedwere excluded. Considering that the stage labels are based on EEG
signals, where the sleep state of the subject was checked every 30 s, the real change point in ECG signals would
not be in tunewith that identified by EEG signals. Hence an optimization process was added in to improve the
outcomes.We chose the 50 points before or after the original change point and searched for the one leading to
the largest SampEn difference between sleep andwake periods. This point was then regarded as the actual change
point in the following analysis. It is worth noting that the optimizationwas also performed on the transition
episodeswith insufficient time duration, with the aimof guaranteeing that the comparison between the
preserved and exclude episodes was at an identical level. The numbers of both selected and discarded transition
episodes are displayed in the last part of table 1.Moreover, to prove that SampEnhas advantages over other time-

Table 1. Statistical results of the numbers of RR interval recordings, RR intervals andRR segments from the sleep apnea subjects in theUCD
sleep apnea database.

Variables Sleep apnea subjects

Name of RR interval recordings ucddb002∼ucddb028, with ucddb004 ucddb011, ucddb012
and ucddb016 excluded

No. of RR interval recordings 23

No. of RR intervals 654,317

No. of RR intervals after removing abnormal heartbeats 642,937

Statistical results for section 3.1

No. of RR segments when settingN=200 3,203

No. ofWake segments when settingN=200 628

No. of REM segments when settingN=200 466

No. of S1 segments when settingN=200 566

No. of S2 segments when settingN=200 1,143

No. of S3 segments when settingN=200 97

No. of S4 segments when settingN=200 300

No. of intra-sleep transition 742

No. of sleep-to-wake transition 163

Statistical results for section 3.2

No. of transition episodes with insufficient duration 749

No. of transition episodes with sufficient duration 37

No. of transition episodes fromREM toWake 6

No. of transition episodes fromS1 towake 13

No. of transition episodes fromS2 toWake 11

No. of transition episodes fromS4 toWake 7
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domain or frequency-domainHRVmeasures, its capability to discriminate sleep-to-wake transitions from
intra-sleep transitions was analyzed and compared.

In step (5), further analysis wasmade regarding the specific sleep stages involved in the transition episodes.
According to the sleep labels, transitions arose fromREM, S1, S2 and S4 stages, and their corresponding episode
numbers are shown in the last part of table 1. Since the S3 stage is relatively transient among all these sleep apnea
subjects, the S3-to-wake transition episode ismissing here. Contrast wasmade among these four types of
transition episodes to evaluate the impacts of the previous sleep stage on the subsequent sleep-to-wake
transitions.

2.3.4. Statistical analysis
In the SampEn calculation, for eachRR segment length ofN=200, embedding dimensionm=2 and physical
threshold r=20mswere applied for subjects from theUCD sleep apnea dataset. The overallmean and SD
values of these subjects were calculated across all RR interval recordings, and the SampEndifferences between
sleep periods andwake periods during sleep-to-wake transitionswere also analyzed. The parametric test,
Student’s t-test, was used to test the statistical difference between different sleep stages. All statistical analyses
were performed usingMATLAB software (version R2020a,MathWorks, Natick, USA). Statistical significance
was set a priori atP<0.01.On the other hand, a receiver operating characteristic (ROC) curvewas used to
evaluate the discriminant ability of eachHRV index. This plot displays the fraction of true positives out of
positives (sensitivity) against the fraction of false positives out of the negatives (one-specificity) at different
threshold settings. The optimum thresholdwas determined according to the Youden’s criterion.Moreover, the
area under theROC curve (AUC)was also computed as an aggregatemeasure of performance for eachmetric.

3. Results

3.1. Results of different states for apnea patients
The SampEn results for every RR segment of length 200 from23 apnea patients are shown infigure 3. The points
that represent a different sleep status overlapwith each other regarding their SampEn andmeanRR interval
values. The distribution of SampEn is so dispersed that it would be impossible to discriminate between the six
sleep stages displayed in the picture. Likewise, neither can themeanRR interval of each segment classify the six
sleep stages. This outcomemight be attributed to the heterogeneous components of RR segments. The status
label of each SampEn result is determined by its RR intervals. Aswementioned above, there are seven different
labels for the experimental results of sleepmonitoring, from0 to 6 for the awake period, the REM stage, the
NREMstage consisting of S1–S4, and the unknown stage (noise). For the entropy result, because 200 is selected
as the segment length of the RR interval in the calculation, it is inevitable to calculate an entropy value for RR

Figure 3. SampEn distribution for 23 subjects from theUCD sleep apnea dataset. Herein, embedding dimensionmwas set as 2,
physical threshold r=20ms, and segment lengthN=200. The x-axis is themeanRR interval for the analyzed 200-beat time
window.
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intervals with different sleep staging labels. Under these circumstances, a substantial part of RR segments
contains diverse sleep stages, so the SampEn valueswould not be representative of a certain type of sleep stage.

Themean and standard deviation of the SampEn values under different labels from23 subjects are shown in
table 2. Some individuals show relatively lower SampEn values in REMandwake stages than theNREM stage,
indicating that the complexity of the cardiovascular system increases as sleep deepens. However, from a
statistical perspective, there is no significant difference in the SampEn values for waking and sleep stages in terms
ofmean and standard deviation, especially with S3 and S4 stages. This could be due to the fragmented sleep of
apnea patients, whose deep sleep periods are transient and unstable, and the occasional wakefulness disturbs the
equilibrium inHRdynamics.

During sleep, since the ANS controls the heart in a gradual process, adjacent RR interval segments are not
independent of each other. This indicates that the former stage has an impact on the latter one. Therefore, we
calculated the difference of SampEn values before and after the sleep state changes. The calculation result is
shown infigure 4. Additionally, the corresponding results analyzed throughRR interval differences are also
presented. In subplot (A), the first group consists of the differences between sleep state andwaking state, which
aremarked by red dots. The second group depicts intra-sleep changes, which are represented by gray dots.
According to the entropy results, it is obvious thatmost of the red points are located in the upper part of the
whole distribution and they are alsomore concentrated. In contrast, the distribution of the gray points ismore
dispersed andmost of them are in themiddle and lower parts. This finding builds the foundation for exploring
the internal rule of the sleep-to-wake process in the following part. In subplot (B), we can see that the
distribution range of sleep-to-wake transitions and intra-sleep transitions are distinctive. In fact, there is a
significant difference between the two groups, and the P-value of the t-test is smaller than 0.01. Thus the
transition patterns from certain sleep stages towakefulness are quite different from those duringNREMaswell
as REMperiods. This enables us to pick out those stage transition episodes that are relatively homogeneous and
stable to further analyze their characteristics via SampEn. In subplot (C), the red dots that represent sleep-to-
wake transition episodes have awider distribution range than in subplot (A), as they do not concentrate in the
upper part of the picture. Now that the red dots and gray ones aremixedwith each other, discriminating sleep-
to-wake transitions from intra-sleep transitions via RRdifferences is not reliable. In subplot (D), themain parts
of the two boxes are quite close and the P-value of the t-test is larger than 0.01, which is inferior comparedwith
the result fromSampEn differences analysis. Therefore, SampEn performsmore effectively thanRR interval in
classifying these two types of episodes.

Table 2. SampEn results for different sleep stages of 23 subjects from theUCDdatabase with embedding dimension
m=2, physical threshold r=20ms and segment lengthN=200.Data are expressed as number ormean±standard
deviation (SD).

Sleep stage

Record Wake REM S1 S2 S3 S4

ucddb002 1.05±0.15 0.81±0.1 1.14±0.12 1.05±0.18 0.95±0.17 1.04±0.11
ucddb003 1.13±0.21 1.3±0.36 1.48±0.39 1.79±0.24 1.74±0.11 1.81±0.15
ucddb005 1.31±0.25 1.11±0.12 1.31±0.2 1.13±0.16 0.68±0 0.86±0.13
ucddb006 0.52±0.2 0.6±0.12 0.47±0.11 0.52±0.11 0.57±0.19 0.5±0.1
ucddb007 1.06±0.19 1.08±0.17 1.15±0.18 1.09±0.17 1.05±0.33 0.85±0.18
ucddb008 0.51±0.17 0.63±0.04 0.53±0.13 0.53±0.14 0.46±0.14 0.42±0.12
ucddb009 0.96±0.17 0.91±0.13 1.02±0.2 1.12±0.15 0.97±0.06 0.96±0.11
ucddb010 0.7±0.18 0.76±0.12 0.79±0.16 0.9±0.11 0.89±0.14 0.82±0.08
ucddb013 0.96±0.18 0.98±0.2 0.98±0.13 1.06±0.14 1.14±0.15 1.07±0.09
ucddb014 0.61±0.13 0.65±0.16 0.69±0.14 0.83±0.11 — —

ucddb015 1.04±0.23 1.07±0.19 1.07±0.23 1.26±0.19 1.15±0.16 1.07±0.09
ucddb017 0.87±0.13 0.9±0.13 0.94±0.26 0.72±0.11 0.67±0.11 0.72±0.11
ucddb018 1.66±0.33 1.6±0.23 1.49±0.46 1.43±0.38 1.4±0 0.96±0.16
ucddb019 0.91±0.16 1±0.13 0.81±0.09 0.93±0.11 0.95±0.07 0.92±0.08
ucddb020 0.8±0.21 0.76±0.14 0.84±0.2 0.96±0.13 0.93±0.16 0.84±0.25
ucddb021 0.97±0.18 1.05±0.2 1.05±0.16 1.17±0.22 1.19±0.1 0.99±0.11
ucddb022 1.55±0.2 1.21±0.29 1.71±0.27 1.87±0.32 — 1.64±0.18
ucddb023 0.51±0.12 0.6±0.08 0.54±0.09 0.54±0.07 0.53±0.13 0.4±0.06
ucddb024 0.71±0.11 0.78±0.11 0.7±0.11 0.64±0.11 0.58±0.07 0.56±0.08
ucddb025 1.15±0.18 1.16±0.1 1.32±0.2 1.33±0.14 1.54±0.14 —

ucddb026 0.89±0.15 1.14±0.21 1.1±0.3 1.07±0.23 0.88±0.26 1.03±0.21
ucddb027 0.73±0.15 0.71±0.09 0.75±0.12 0.92±0.11 0.96±0.08 0.95±0.05
ucddb028 0.92±0.12 0.83±0.13 0.95±0.14 0.9±0.21 0.78±0.12 0.78±0.21
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3.2. Results of sleep-to-wake transitions after refinement
In the last section, we performed statistical analysis of labeled RR intervals fromdifferent sleep stages. One of our
goals is to capture the state transition process from sleeping towaking through the physical threshold-based
SampEn algorithm.Nevertheless, according to research, every patient with apnea syndromewill experience 100
to 130 different states every night, thus some labeled sleep stagesmight be too transient for further calculation. In
section 3.1, we also subtracted the entropy values after state transitions from those before transitions to obtain
the differences, andmost of the SampEn differences from sleep towakefulness are higher than other cases.
Although there is a significant difference between the distribution range of sleep-to-wake transitions and intra-
sleep transitions, discriminating each single sleep-to-wake transitionwould still be hard, which indicates that the
state transition in reality has corresponding requirements for the sequence length before and after the transition.
Furthermore, since the adjustment of the ANS depends on the coordination of different systems, therewill be a
certain delay in theHR adjustment. As the labels of sleep stages are based on EEG signals, such delay could
merely be presented in cardiovascular system. At this time, not only the RR intervals of the current state
themselves, but also the regulatory factors of the previous state, such as the level of hormones, have a continuous
impact on the presentHRV indexes. Therefore, the delay will lead to a fuzzy transition in the RR intervals
between different states. To obtain ideal state transitions, first of all, we need to ensure that the regulatory effect
of the ANShas remained long enough for the RR sequences of the previous sleep state aswell as the following
wakefulness. Hencewe analyzed the overall stage transition episodes and eliminated thosewhose previous stages
and next stages are relatively short.

Figure 5 presents the entropy results offine sleep-to-wake transition episodes after we have filtered out those
with sufficient state duration. As a premise, we assumed that a sleep-to-wake transition is worth analyzing only
when thewakefulness containsmore than 100 heartbeats. In subplot (A), gray dots stand for transition episodes
with insufficient duration, where the previous sleep stage is no greater than 200 points.Meanwhile, red dots
represent transition episodeswith previous sleep stage longer than 200 points. The distribution of SampEn
differences implies thatmost transition episodeswith sufficient duration of the previous stage show relatively
large values, and thosewhose preceding sleep stages are transient have unpredictable SampEn differences. This
indicates that only state transitions with both enduring and stable sleep aswell as wakefulness stages are able to
present the sudden change in SampEn values. Subplot (B) displays the distribution ranges of SampEn differences
for these two groups.We can see that the entropy differences of transition episodes with sufficient sleep periods
are significantly larger than the other ones (P<0.01). Thus the transitionswith sufficient duration of previous
sleep stage are appropriate objects to further analyze theHRV changes in the sleep-to-wake process.

Furthermore, considering that the discrimination between sleep-to-wake transitions and intra-sleep
transitionsmight be evenmore obvious through otherHRV indexes besides SampEn, a comparison among

Figure 4. (A)Distribution of SampEn differences between sleep andwakefulness aswell as intra-sleep changes for 23 subjects from the
UCD sleep apnea dataset. (B)Distribution ranges of SampEn differences between sleep andwakefulness aswell as intra-sleep changes.
(C)Distribution of RRdifferences between sleep andwakefulness aswell as intra-sleep changes. (D)Distribution ranges of RR
differences between sleep andwakefulness aswell as intra-sleep changes. ‘*’means there is a significant difference between the two
groups. Herein, embedding dimensionmwas set as 2, physical threshold r=20ms, and segment lengthN=200.
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variousHRVmeasurements wasmade. Four time-domain and two frequency-domainHRVmeasures were
included in this study. Table 3 gives an overview of the added indices. Time-domain indexes ofHRVquantify the
amount of variability inmeasurements of the inter-beat interval, which is the time period between successive
heartbeats. Frequency-domainmeasurements estimate the distribution of absolute or relative power into
different frequency bands. All these standardHRVmeasures provide a perspective different from the nonlinear
entropymethod, which aims to explore whether SampEn has an advantage in sleep-to-wake transition
discrimination.

Likewise, the transition episodes with persistent sleep orwakefulness used abovewere analyzed via various
HRVmeasures, and the differences between the pre-transition and post-transition segments were calculated. In
accordancewith the previous analysis, a segment length of 200was used for allmeasures, and embedding
dimensionmwas set as 2 and physical threshold r=20ms for SampEn. The overall results were comparedwith
SampEn in the formof ROC curves andAUC values infigure 6. Asfigure shows, SampEn achieves the highest
AUCvalue 86.85% in classifying sleep-to-wake transition episodes from the intra-sleep ones. For the four time-
domainHRV indices analyzed,meanRR reaches the second highest AUCvalue of 78.35%,which is better than
the 61.44%of SDNN, 65.7%of RMSSD and 67.79%of pNN50. As for the two frequency-domain indices, LF
power achieves 63.3% and LF/HF ratio achieves 60.55%. The less preferable performance of the frequency-
domainmeasuresmight be attributed to the length of the RR segments, which is not adequate for theHRV
power analysis. It is worth noticing thatHFpower, which depicts the high-frequency band (0.15–0.4Hz),
produces complementary results with LF powerwhen subtracting the post-transition segment from the pre-
transition one, leading to the sameROCcurve andAUCvalue, and thus is omitted in this evaluation. On the

Figure 5. (A)Distribution of SampEn differences for sleep-to-wake and intra-sleep transitions with sufficient duration from23UCD
sleep apnea subjects. (B)Distribution ranges of SampEn differences from sleep-to-wake and intra-sleep transitions with sufficient
duration. ‘*’means there is a significant difference between the two groups.Herein, embedding dimensionmwas set as 2, physical
threshold r=20ms, and segment lengthN=200.

Table 3.HRV time-domain and frequency-domainmeasures included in the sleep-to-wake and intra-sleep transitions discrimination.

Parameter Unit Description

Time-domainmeasures

MeanRR ms Mean value of RR intervals

SDNN ms Standard deviation of RR intervals

RMSSD ms Rootmean square of successive RR interval differences

pNN50 % Percentage of successive RR intervals that differ bymore than 50ms

Frequency-domainmeasures

LF power nu Relative power of the low-frequency band (0.04–0.15Hz) in normal units

LF/HF % Ratio of low-frequency to high-frequency power
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whole, although sleep-to-wake transitions differ from the intra-sleep ones in variousHRV indices, SampEn
presents such discriminationmore preferably.

Now that we have selected transition episodeswith lasting sleep andwake periods, studying sleep-to-wake
transitions arising fromdifferent sleep stages ismeaningful. According to the filtering results, among all these
apnea subjects, we can observe stable wakefulness after any sleep stage except S3, which ismomentary and rare in
the recordings. Figure 7 exhibits four transition episodes fromREM towakefulness as an example. The RR
intervals where transitions appear are plotted using different colors according to their sleep stage labels, and the
two segments selected for SampEn calculation aremarked in lavender and cornsilk respectively. In the first three
subgraphs, there is a sharp drop at the junction of green line and brown line, corresponding to the increasing
heart rate at the beginning of wakefulness. A decrease in SampEn is also observed. The twoRR segments of
length 200 analyzed a bit ahead or behind the transition heart beat present a declining complexity inHRV, and
such alteration is out of synchronizationwith the stage labels specified by EEG. In subplot (D), where the stage
transition point does not show an obvious decline in RR interval duration, SampEn is capable of depicting
inherent information in the cardiovascular system that is not fully expressed byHR. The SampEn of the REM
stage RR segment ahead of wakefulness is actually higher than that of wakefulness in spite of the fact that they
look quite alikemorphologically.

Figure 6.ROC curve plots withAUCvalues for classifying sleep-to-wake transitions and intra-sleep transitions through variousHRV
indices.

Figure 7.Presentation of transitions fromREMstage towake stage for (A) ucddb017, (B) ucddb019, (C) ucddb021 and (D)ucddb026.
Herein, embedding dimensionmwas set as 2, physical threshold r=20ms, and segment lengthN=200.
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Four transition episodes fromS1 towakefulness are displayed in figure 8. TheRR intervals that contain
transitions are plotted by two colors, where blue line corresponds to S1 stage and brown line corresponds to
wake stage, and the two segments selected for SampEn calculation aremarked in lavender and cornsilk
respectively. At this time, the RR interval time series from S1 stage presents less volatility comparedwith REM
stage, and the subsequentwakefulness also seems to be relative placid. It is still difficult to discriminate thewake
period from the sleep period throughRR interval sequences, as these two segments look quite alike, and the
acceleration ofHRdoes not always followswakefulness in rapid succession. On the other side, a decrease in
SampEn is present after the subject has switched from light sleep stage towakefulness, thus the entropy
measurement reveals the nonlinear changes inside the sleep-to-wake transition.Moreover, as the S1 stage is
relatively close to the REM stage in the overall sleep cycle, the SampEn changes for both of them is not so
remarkable, and the frequent transitions betweenREM, S1 andwakefulness in sleep apnea subjectsmight also
interfere with the SampEn values.

Transition episodes fromS2 towakefulness are shown infigure 9. TheRR intervals of the transition parts are
plottedmainly by two colors, where the slate blue line corresponds to the S2 stage and the brown line
corresponds to thewake stage, and the two segments selected for SampEn calculation aremarked in lavender
and cornsilk, respectively. In contrast to the REMand S1 stages, the RR interval time series from the S2 stage
containsmore small-range fluctuations and the followingwake period seems to be influenced by themode of S2

Figure 8.Presentation of transitions fromS1 stage towake stage for (A) ucddb014, (B) ucddb021, (C) ucddb022 and (D) ucddb025.
Herein, embedding dimensionmwas set as 2, physical threshold r=20ms, and segment lengthN=200.

Figure 9.Presentation of transitions fromS2 stage towake stage for (A) ucddb015, (B) ucddb018, (C) ucddb022 and (D) ucddb025.
Herein, embedding dimensionmwas set as 2, physical threshold r=20ms, and segment lengthN=200.
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stage, as it presents a placid but less regular pattern. Compared to the former twofigures, in figure 9, the SampEn
values of the sleep period soar to a relatively higher level as sleep deepens, and the followingwake period seems to
be influenced by themode of the S2 stage, as it presents a placid but less regular pattern. In otherwords, the
SampEn difference between sleep andwakefulness becomesmore obvious under these circumstances.

Figure 10 gives four examples of transition episodes from the S4 stage towakefulness. TheRR intervals of the
transition parts are plotted by two colors, where the red line corresponds to the S4 stage and the brown line
corresponds to thewake stage, and the two segments selected for SampEn calculation aremarked in lavender
and cornsilk, respectively. It is interesting that thewakefulness is quite transient here, and the subjects go into
light sleep after arousals fromdeep sleep. Although the RR segment of the deep sleep period appears to be less
fluctuated, its SampEn still remains high and the subsequent wakefulness witnesses a sudden drop inRR interval
time duration as well as in entropy value. In fact, the high entropy value of the S4 stage implies some nonlinear
properties of the deep sleep stage. Albeit insensitive to external stimuli, the cardiovascular system still presents
high complexity during deep sleep.

Table 4 summarizes the SampEn results of transition episodeswith sufficient sleep andwakefulness
duration. Besides our proposed physical threshold, we alsomade a comparison between the sleep stage and the
wake stage for the episodes selected above using SampEnwith traditional threshold r=0.20, aiming to verify of
the drop in entropy value still exists with recommended r (i.e. between 0.10 and 0.25 times the SDof the time
series).

For physical threshold, among the four sleep stages, REM seems to be indistinguishable from the
wakefulness that follows. Both transitions arising from the S1 and S4 stages show a significant difference between
the sleep andwake periods.Meanwhile, the transition from the S2 stage towakefulness ismost remarkable with a
P-value less than 0.01. Based on these findings, we can conclude that ensuring there are lasting sleep and
wakefulness periods, the status transitions emerged fromNREMsleep, S2 and S4 stages in particular, are likely to
trigger a sudden decrease in physical threshold-based SampEn value. Since REM is the arousal during sleep and
S1 is the transition between sleep andwake, they sharemore features in commonwithwakefulness thanwith
light or deep sleep.

For a traditional threshold, the outcomes are similar to those of SampEnwith physical threshold, as
transitions fromS2 stage have aP-value less than 0.01 andREM-to-wake transitions do not possess a significant
difference. In themeantime, transitions fromboth S1 and S4 stages have aP-value a bit smaller than those using
a physical threshold, implying that the discriminations aremore notable. Thus, we can still claim that the
traditional SampEn is able to depict the sudden decrease when switching from sleep towakefulness.

4.Discussion

In the past decades, sleep-related research has concentrated on how various factors influence sleep and how sleep
affects human physiology and cognition (Krystal et al 2002, Schmidt et al 2012). Among them,most studies have
focused on automatic sleep stage classification and different variables have been considered in the experiments,

Figure 10.Presentation of transitions fromS4 stage towake stage for (A) ucddb002, (B) ucddb013, (C) ucddb021 and (D) ucddb026.
Herein, embedding dimensionmwas set as 2, physical threshold r=20ms, and segment lengthN=200.
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Table 4.Results of SampEn and SampEn difference before and after sleep-to-wake transitions.Herein, transitions arising from four different sleep stages were analyzed, where both sleep andwake periods have sufficient time duration. For
SampEn parameters, embedding dimensionmwas set as 2, physical threshold r=20ms, traditional threshold r=0.20, and segment lengthN=200. P-valuemeasured the statistical significance between sleep period and the following
wakefulness. Physical threshold is expressed as rp and traditional threshold is expressed as rt for brevity. Data are expressed as number ormean±standard deviation (SD). ‘*’: statistical significanceP<0.05; ‘**’: statistical
significanceP<0.01.

Start stage
REM S1 S2 S4

Threshold rp rt rp rt rp rt rp rt

Sleep stage SampEn 1.02±0.40 1.06±0.25 1.12±0.33 1.26±0.29 1.51±0.46 1.52±0.43 1.25±0.35 1.35±0.31
Wake stage SampEn 0.73±0.39 0.93±0.45 0.84±0.35 0.97±0.34 1.02±0.22 1.08±0.21 0.85±0.25 0.94±0.21
SampEn difference 0.29±0.05 0.13±0.30 0.29±0.06 0.29±0.23 0.49±0.28 0.44±0.43 0.40±0.22 0.42±0.24
P-value 0.2724 0.5965 0.0474* 0.0341* 0.0071** 0.0084** 0.0235* 0.0185*
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such as aging, diurnal rhythm, sleep disorders and other diseases (Chervin et al 2004, Javaheri 2006).
Nevertheless, the internalmodeswithin sleep stage transitions still remain unclear and few studies have focused
on sudden changes rather than stable sleep periods.While EEG signals reflect the different characteristics during
sleep stages intuitively, it is also noteworthy that due to the complex operation and high cost of PSG, other
biological signals includingHRV, bodymovement and respiratory rate have been regarded as alternative
measurements for reliable and low-cost sleep staging; particularlyHRV,which is an index of the ANS. In fact,
the technique ofHRV-based sleep staging has attracted a great deal of attention. Since sleep stages are associated
with activities of the ANS,HRVparameters in time, frequency as well as nonlinear domain reveal significant
differences betweenNREMandREM sleep, and the classification results are comparable to those fromEEG-
basedmethods (Yucelbas et al 2018). The analysis of sleep–wake transitions through physical threshold-based
SampEn in section 2 also demonstrated that the nonlinearHRVmethod is able to capture the transient state
changes reflected in the cardiovascular time series.Moreover, sleep disorders like sleep apnea has been explored
for a long time and their effects on cardiovascular autonomic function during sleep andwake has been assessed
throughHRVmeasurements. It is reported that although sleep apnea patients present sympathetic overactivity,
the sleepmechanismdoes not change (Khoo andBlasi 2013). In this sense, it would be interesting to seewhether
the sleep regulation between different sleep stages, namely sleep stage transition, still has certain patterns among
sleep apnea subjects. Thuswefirst calculated the SampEn values of RR segments fromdifferent sleep stages of
sleep apnea patients and then imposed a refinement on the sleep-to-wake transition episodes to obtain
discriminative SampEn differences. The results showed that when both sleep andwake stages have sufficient
duration, a transition fromNREMsleep towakefulness witnesses a drop in SampEn value.

In the results section, we have analyzed the RR interval time series from the REM stage and it seems that quite
a few episodes exhibit a stepwise descent in SampEn value from segment to segment. Figure 11 exhibits the REM
stage RR segments from four sleep apnea subjects. Different sleep stages are expressed by lines in different colors
according to the legend and the SampEn value of eachREMRR segment is presented by a gray block in the
background. Based on each subgraph, we can see that the consecutive REMperiod has a decrease in SampEn
repeated for approximately three segments. This repetitive pattern is not influenced by the length of the REM
stage and it appears between different individuals. Although the cause of this phenomenon is unclear, we can use
it as a reference for judging REM stage in entropy-basedHRVmethods.

Another enlightening phenomenon in the analysis of the sleep time series is the occurrence of the intrinsic
sequences. In the previous study, we assumed that anRR interval sequence with fastHRwould reflect some
internal characteristics of heart failure or healthy individuals, as the causes ofHR acceleration for these two types
of subjects were different in essence. Actually, we tried to search for episodes in the long-termECG signals where
the external disturbance has beenminimized. An ideal analysis object would be sleep period, especially during
the deep sleep stage, when individuals are almost completely undisturbed (Togo et al 2006). At thatmoment, the
RR interval time series shows the intrinsic characteristics of the cardiovascular system, thuswe regard it as an
intrinsic sequence. Figure 12 gives examples of the deep sleep periods from four subjects. Similarly, different
sleep stages are expressed by lines in different colors according to the legend and the SampEn values of the deep
sleep RR segment and segments of other stages are presented by gray and light orange blocks, respectively. The

Figure 11.Presentation of REM stage RR segments for (A) ucddb007, (B) ucddb015, (C) ucddb022 and (D) ucddb024.Herein,
embedding dimensionmwas set as 2, physical threshold r=20ms, and segment lengthN=200.
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episodes fromdifferent individuals all show that the SampEn values of deep sleep segments are lower aswell as
more stable than adjacent RR segments fromother sleep stages, which can be attributed to the less variability of
RR intervals during deep sleep. If we interpret sleep as a type of stimulation, the gradual change fromS1 to S4 is a
process of adaptation, where SampEn first increases then decreases. As the individual has fully adapted to the
stimulation, the cardiovascular system reaches a stable state and, as a consequence, SampEn becomes lower.
Since the S3 stage only appears transiently, it is the S4 stage that takes dominance during the deep sleep period.
Hence it would be reasonable to consider the RR interval time series from the S4 stage as the intrinsic sequence
we seek. Now that such a sequence is a good reflection of the internal features, wewonderwhat the result would
be if we use its nonlinear indexes as baselines to normalize time series fromother part of the recording. It is
worth exploringwhether such processing could eliminate the intra-individual differences when analyzing long-
termphysiological time series such as 24 hour ECG signals.

The results of the present study also provoke another issue that requires consideration. Sincewe have
demonstrated the change inHRVmeasurement during sleep stage transition, which proves the impact of the
brain on theANS, whether the brain control over the ANS can be captured by other physiological signals similar
to ECG for different sleep apnea patients remains to be studied. If that were true, it seems possible that the state
of the body can be determined by non-EEGmethods. In addition, the response of the cardiovascular system to
different stages is very complicated. If we regard the response of theANS during sleep as the co-expression of
multi-functions, one relevant function plays a leading role while the others are suppressed at certain sleep stages.
Therefore, the regulation of the organismduring different sleep stages needs to be investigated in detail in the
future.

Furthermore, with the prevalence of wearable devices nowadays, actigraphy (ACT), which records
movement over an extended period of time, has beenwidely used in sleep–wake pattern recognition (Ancoli-
Israel et al 2015). Through an internal accelerator, ACTdistinguishes sleep fromwakefulness under the premise
thatmovements are frequent and largewhen people are awake, but absent or small when they are asleep.
Compared to PSGmethods, ACThas relatively good sensitivity but poor specificity, as immobile wakefulness
often leads to incorrect diagnosis (Sivertsen et al 2006). On the other hand,HRV indices, which perceive the
sleep process via differentmechanisms, have been proved to be comparable in sleep–wake pattern
discriminationwith the ACTones, and studies have shown that SampEn can provide additional information
related to the activity of ANS in compensation for the undetectedmovements duringwakefulness, thus
improving the low specificity of ACTmethods (Aktaruzzaman et al 2017). In that sense, the combination of
ACT indices andHRV indices such as SampEnwould be amore preferablemethod for sleep–wake transition
detection.

There are several limitations in this study. First, only subjects from theUCD sleep apnea databasewere used
to examine our assumption and the sleep-to-wake transition episodes remained after refinement are quite
limited. Thuswe ought to use other sleep disorder databases to fully demonstrate the SampEn change during
state transition. Second, a healthy control groupwith EEG-based sleep stage labels needs to be considered.
Although the sleep regulation in sleep apnea subjects does not alter, disease-related symptoms such as
intermittent hypoxia and arousal can really influence their cardiac rhythm. Thus it would be necessary to analyze

Figure 12.Presentation of deep sleep periods for (A) ucddb007, (B) ucddb018, (C) ucddb023 and (D) ucddb024.Herein, embedding
dimensionmwas set as 2, physical threshold r=20ms, and segment lengthN=200.
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the corresponding transition process in healthy individuals as a reference. In this case, the rule of sleep stage
transitionwould bemore applicable. Third, since the severity of the sleep apnea subjects is different, their times
series varies individually. To analyze the sleep time series from these patientsmore precisely, pathological
indexes such as apnea hyponea index (AHI) should be taken into account.Moreover,more parameter
combinations, such as larger embedding dimensionm, various physical threshold r and different segment length
N, should be involved in the study, to examine the consistency of the proposed SampEn algorithm in detecting
state change.

5. Conclusion

The current study has discovered the SampEn decrease phenomenon during sleep-to-wake transition for sleep
apnea patients. Significant entropy differences have been observedwhen analyzing state changes during the sleep
process, especially from sleep towakefulness. In order to further evaluate the ANS regulation during sleep-to-
wake transition, a refinement was applied tofilter out transition episodeswithout sufficient duration, and the
remaining episodes presented a significant drop in SampEn value after the state switch. Therefore, the study
provides a newway to analyze human sleep state based on non-EEG signals and simultaneously opens up new
ideas for assessing the ANS function in daily physiological activities.
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