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Abstract— Arrhythmia is a kind of cardiovascular disease that
seriously threats human health. Intelligent analysis of electrocar-
diogram (ECG) is an effective method for the early prevention
and precise treatment to arrhythmia. In clinical ECG waveforms,
it is common to see the multi-label phenomenon that one patient
would be labeled with multiple types of arrhythmia. However, the
current research is mainly to use the multiclass methods to solve
the multi-label problem, ignoring the correlations between dis-
eases and causing information loss. Therefore, this article aims:
1) to propose a multi-label feature selection method based on
ECG (MS-ECG) and design an evaluation criterion of ECG
features based on kernelized fuzzy rough sets so as to choose
the optimal feature subset and optimize ECG feature space
and 2) to propose the multi-label classification algorithm of
arrhythmia based on ECG (MC-ECG) by establishing a mul-
tiobjective optimization model. This algorithm based on sparsity
constraint explores the correlations between arrhythmia diseases
and analyzes the mapping relationship between ECG features
and arrhythmia diseases, so that one ECG signal would be auto-
matically and accurately given multiple labels. Through sufficient
experiments to prove the feasibility of our methods, we obtain
the selected feature subset composed of 23 ECG features by
MS-ECG. For the six evaluation criterions of MC-ECG, average
precision is 0.8462, hamming loss is 0.1041, ranking loss is 0.1313,
one-error is 0.2023, coverage is 0.4015, and micro-F1 is 0.6088.
The outcome presents optimal to the current algorithms.
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I. INTRODUCTION

ARRHYTHMIA is one of the most common and extremely
high incidence cardiovascular diseases, which even

causes syncope and sudden death. Electrocardiogram (ECG)
signals intuitively reflect the generation and conduction
process of cardiac electrical excitation in the conduction
system, and it can reflect the physiological conditions of the
heart to a certain extent [1]. ECG is one of the most common
methods for the detection of arrhythmia. With the rise of
wearable ECG monitoring devices [2], more and more ECG
machines come into being. The automatic analysis of ECG
signals can not only help doctors improve work efficiency,
but also be the key to early warning and early prevention of
abnormal ECG.

In recent years, machine learning (ML) made a great break-
through in the automatic diagnosis of ECG signals [3]–[5].
Domestic and foreign researchers hope to complete automatic
diagnosis of ECG signals with high accuracy and high speed.
Therefore, it is an urgent problem to establish an intelligent
classification model for arrhythmias using ML methods to
improve the accuracy of ECG classification [7]. Although the
development of ML algorithms has brought new development
to the traditional classification algorithm of arrhythmia, there
are two important problems need to be solved.

1) How to solve the problem of multi-label with ECG
data? One patient may correspond to multiple arrhyth-
mia types. This is known as “multi-label phenomenon.”
Multi-label problem is common in clinical ECG data-
base. There are obvious differences between the multi-
label problem and the multiclass problem. In multiclass
problem, the relationship between the patient and the
label is one-to-one. In multi-label problem, the rela-
tionship between the patient and the label is one-to-
many, as shown in Fig. 1. Therefore, how to build a ML
model to deal with the multi-label problem in arrhythmia
classification task needs to be further studied.

2) How to deal with the high-dimensional problem of ECG
features? When ECG signals are mapped to the feature
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Fig. 1. Difference between (a) multiclass problem and (b) multi-label
problem.

space, they often still have high dimension. In addition,
the original ECG features obtained by different ECG
feature extraction methods may be redundant or irrele-
vant for the arrhythmia classification task. Redundant
features may lead to high computational complexity
and the curse of dimensionality. Irrelevant features may
confuse classification algorithms and reduce learning
performance. Therefore, it is necessary to carry out
feature selection before the classification of arrhythmias.

This article presents a framework (Fig. 2) for multi-label
feature selection and multi-label classification of Arrhythmia.
This work solves the problem of multiple arrhythmia labels in
clinical ECG signals by proposing multi-label feature selection
and multi-label classification framework, based on which ECG
signal could be automatically and accurately given multiple
labels. This framework can realize synchronous processing
of multi-label problem and high-dimensional problem. Fur-
thermore, the practicability and effectiveness of the proposed
framework are proved to be superior than other ECG classifica-
tion methods. The contributions of this article are summarized
as follows.

1) Proposing an integrated framework. An effective frame-
work was proposed for multi-label classification of
Arrhythmia with feature selection and multi-label clas-
sification integrated.

2) Obtaining disease-specific features. Specific features
related to each disease were analyzed and selected so
that discriminative information could be acquired and
the features were highly interpretable.

3) Incorporating diseases correlations. Considering dis-
eases are not independent and related to each other,
we tried to mine this correlation and incorporate it into
our model.

II. RELATED WORK

Arrhythmia classification algorithm based on ML is a hot
research topic [8]–[14]. These algorithms can be divided into
two categories: 1) classification algorithms based on traditional
ML [8]–[11] and 2) classification algorithms based on deep
learning (DL) [12]–[14].

For traditional ML classification algorithms, Raj and Ray [8]
extracted time-frequency features by discrete cosine transform,

and classified the ECG signals using support vector machine
(SVM). Avdelazez et al. [9] utilized the wavelet transform,
empirical mode decomposition, discrete cosine transforms,
and statistical methods to obtain ECG features, and detected
atrial fibrillation by random forest. Sadhukhan et al. [10]
considered the changes of ECG waveform are reflected in
the phase distribution pattern of the Fourier harmonics and
conducted harmonic phase distribution pattern of ECG data
to identify myocardial infarction. Banerjee and Mitra [11]
analyzed ECG data to explore the spectral differences and used
cross wavelet transform for the classification of ECG signals.
For the classification algorithms based on DL, Hou et al. [12]
used long–short-term memory (LSTM) method to conduct
the classification of five heartbeats types, including normal,
atrial premature complexes, left bundle branch block, right
bundle branch block, and premature ventricular contractions.
Taji et al. [13] proposed deep belief networks method to
detect atrial fibrillation from poor-quality ECG signals, and the
accuracy increased to 81%. Feng et al. [14] extracted features
by frequential stacked sparse autoencoder with unsuper-
vised learning, and then they proposed time-dependent cost-
sensitive classification model to analyze ECG signals. In 2019,
Hannun et al. [1] published a study in Nature Medicine. His
team proposed a DL model about the residual neural network
for accurately to detect ten types of arrhythmia, sinus rhythm,
and noise by a single lead ECG. It can be seen from the
literature survey that the ECG classification models based
on ML have excellent performance, especially the models
based on DL have reached the most advanced level in the
classification learning task. However, DL is widely criticized
due to the lack of interpretability. The main reason is that
there are parameter sharing and complex feature extraction in
the DL model, as shown in Fig. 3. Interpretability is crucial
in the analysis of ECG signals. The task of ECG classification
is not only to obtain high classification accuracy, but also to
assist doctors to understand the ECG features. Further, ECG
classification model could allow doctors to more transparently
understand why this model makes such decisions and what
features play an important role in this decision. Therefore,
it is very important to study multi-label feature learning and
multi-label classification of arrhythmias.

This article is an extension of the proceeding article [15].
In our previous article [15], we designed multi-label feature
selection algorithm of ECG signals (MS-ECG), as shown
in Fig. 2. The performance of MS-ECG had been preliminarily
vitrificated by the experiments. We pushed forward the study
and have presented an improved algorithm about multi-label
classification. There are four major innovations and improve-
ments compared to [15].

First, we design a comprehensive framework for long-term
ECG signals, mainly composed of multi-label feature selection
and multi-label classification, to realize synchronously han-
dling the problem of multi-label and high-dimensional of ECG
features. In comparison, only multi-label feature selection
algorithm (MS-ECG) was preliminary performed to handle
high-dimensional problem in [15].

Second, we further establish an effective multi-label clas-
sification model of arrhythmia for ECG signals (MC-ECG).
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Fig. 2. Proposed framework for multi-label feature selection and multi-label classification of Arrhythmia.

Fig. 3. Traditional ML and DL modeling steps of ECG signals.

MC-ECG is constructed by multiobjective optimization based
on sparse regularization factor. First of all, each sub-objective
in the classification task was determined before analyzing
the relationships between sub-objectives. Then, we design
the optimal function model of each sub-objective, and the
correlations between abnormal ECG diseases is mined, so that
the multiobjective optimization function model could be con-
structed. Finally, the sparse coefficient matrix is obtained
by solving the optimization problem. Because the sparse

coefficient matrix indicates the mapping relationship between
ECG features and the corresponding diseases, MC-ECG can
realize the multi-label prediction for a long-term ECG signal.

Third, although we obtained the optimal feature subset by
MS-ECG in [15], the specific features corresponding to each
arrhythmia type have not been studied. Therefore, another
extended work in this article is that the specific ECG features
corresponding to each arrhythmia type are reselected in the
sparse coefficient matrix obtained from MC-ECG.

At last, extensive and comparative experiments are further
performed to test the proposed framework. In addition to the
results of the previous MS-ECG, the performance evaluation
of the proposed MC-ECG is extended by comparing with other
multi-label classification algorithms.

In summary, the framework presented in this work has
been significantly improved in the classification of arrhythmia
compared to the previous work [15]. This framework has
promising potential for arrhythmia classification.

III. DATABASE

An independent, open access dataset from 11 different
hospitals was provided by the China Physiological Signal
Challenge (CPSC) [16]. This database contained two parts:
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TABLE I

RATE OF RECORDINGS FOR EACH LABEL TYPE

1) CPSC 2018 Training Set (open online) and 2) CPSC
2018 Test Set (unopen). Twelve leads ECG recordings sam-
pled as 500 Hz last from 6 s to just 60 s. In this article,
we use the first lead recordings. This dataset is multi-label
data that includes nine types of ECG signals, and a few
recordings have up to three labels. In this, we research multi-
label classification for six types of ECG signals, including
normal type and five types of common arrhythmia, such as
atrial fibrillation (AF), right bundle branch block (RBBB),
left bundle branch block (LBBB), premature atrial contraction
(PAC), and premature ventricular contraction (PVC). In addi-
tion to the normal types, five types of arrhythmia all have
high prevalence, among which the prevalence rate of AF is
11%∼15%, LBBB and RBBB are 5%∼7%, PAC is 5%∼7%,
and PVC is 14%∼16% [2].

This article adopts 5078 ECG recordings with normal type
or five types of arrhythmia from CPSC 2018 Training Set
as training dataset. The rate of recordings for each label in
training set is shown in Table I. This rate is obtained by
calculating the proportion of the number of recordings for each
type in this set to the total number in this set.

This article also adopts 2175 ECG recordings with normal
type or five types of arrhythmia from CPSC 2018 Test Set as
test dataset. The rate for each label in test set is also shown
in Table I. As is presented, the rate is the same in both training
set and test set. This is because the CPSC dataset was divided
into training and test sets with a random 70–30 training-test
split. It is noted that the sum of all rates is greater than 100%
due to the presence of multi-label phenomenon.

IV. METHOD OF MULTI-LABEL FEATURE SELECTION

OF ARRHYTHMIA FOR ECG SIGNALS

In this section, we design multi-label feature selection
algorithm based on ECG signals (MS-ECG) [15] to solve
high-dimensional problem in intelligent annotation of ECG.
MS-ECG can effectively select the optimal ECG feature subset
by evaluating the importance of features.

A. Feature Extraction

Before feature extraction, the QRS-wave, P-wave, and
T-wave positions of all ECG signal are first detected. In this
article, the algorithm proposed by Shang et al. [17] and
Suárez-León et al. [18] is used to detect the position of
T-wave, Q-wave, S-wave, P-wave, and R-wave, and the open
source algorithm is prepared by Datta et al. [19]. In addition,
ECG signal with less than 12 RR intervals was excluded.

In this article, 117 features are extracted according to
the position of P-wave, Q-wave, R-wave, S-wave, and
T-wave [20]–[24]. These features are divided into four
types, 27 time-domain features, 34 frequency-domain features,
30 morphological features, and 26 nonlinear features.

1) Time-Domain Features: Time domain features are sta-
tistical features obtained by the RR interval of ECG signal,
including the maximum and minimum value of the RR inter-
val, the median of heart rate, the root mean square of the
difference between adjacent RR intervals, etc.

2) Frequency-Domain Features: Frequency-domain fea-
tures are mainly based on the ECG signals with windows. Then
the spectral parameters of the window signal are calculated,
including the spectral center, the frequency of the center
of mass, the wavelet transform coefficients, normalized low-
frequency power and normalized high-frequency power, etc.

3) Morphological Features: Morphological features are
mainly based on the position and amplitude of P-wave,
Q-wave, R-wave, S-wave, and T-wave to calculate the depths
of S-wave and Q-wave related to R-wave, ST slope, and the
width of QRS, etc.

4) Nonlinear Features: Nonlinear features are computed
by nonlinear method, such as, sample entropy, approximate
entropy, fuzzy entropy, etc.

B. Problem Description

The above 117 ECG features form the ECG feature set
A = {a1, a2, . . . , a117}. All the ECG signals constitute the
sample set X = {x1, x2, . . . , xn} of the multi-label classi-
fication algorithm, and corresponding to it is the label set
D = {d1, d2, . . . , d6} composed of six arrhythmia labels. In the
training set D = {(xi , yi)|1 ≤ i ≤ n}, xi ∈ R

117 is a
117-dimension feature vector, and yi ∈ {0.1}6 is 6-D binary
label vector. If xi has the label d j , then yi j = 1 for the
vector yi , otherwise yi j = 0.

C. MS-ECG

For ECG feature space, we use Gaussian kernel matrix [25]
M{ai } to evaluate the similarity between ECG signals under
the ECG feature ai ∈ A (i = 1.2, . . . , 117). When other
ECG feature a j, j �=i is added, the combined way of M{ai } and
M{a j } is minimum strategy. For label space, we use Match
kernel matrix [25] M �{di } to evaluate the label overlap ratio
between ECG signals under the arrhythmia label di ∈ D

(i = 1.2, . . . , 6). When other label d j, j �=i is added, the com-
bined way of M �{di } and M �{d j } is sum strategy.

1) Combination Strategy of Two Spaces:
Definition 1: For a multi-label decision system �X,A ∪ D	,

M F is the combined kernel matrix about ECG feature subset
F ⊆ A, and M L is the combined kernel matrix in arrhythmia
label space L. Let λ ∈ [0.1) be the penalty factor. The
combination of kernel matrix M{F,L} between F and L is
defined as

M{F,L} = M F − λM̃ L . (1)

In (1), M̃ L = M L/6. It is clear that all elements of M F

are in [0,1], while all elements of M L are in [0,6]. Aiming to
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achieve dimensionless, we use M̃ L = M L/6 to amend M L .
M̃ L represents the label overlap ratio between ECG signals in
the arrhythmia label space L. M{F,L} indicates the probability
of becoming the nearest different classes’ sample. S(xi) and
T (xi) are proposed to be the sets of kernel different classes’
samples and kernel same class’s samples, respectively. S(xi ) as
well as T (xi) can be calculated by M{F,L} [26] when setting
the parameter μ.

2) Construction Multi-Label Kernelized Fuzzy Rough Set
Model:

Definition 2: For X(x ∈ X), S(x) and T (x) are known. The
lower and upper approximations are analyzed by

K R D(x) = mean
u∈S(x)

{1 − M F (x, u)} (2)

K
R

D(x) = mean
u∈S(x)

{M F (x, u)}. (3)

3) Importance of ECG Feature: For F ⊆ A, K R
F (L)(x) is

assumed to be the lower approximation of x ∈ X. Then the
multi-label fuzzy positive region PF (L) can be evaluated as

P R
F (L) =

∑
x∈X

K R
F (L)(x). (4)

By the above definition of fuzzy positive region, we can
express the multi-label fuzzy dependence function as

γ R
F (L) = P R

F (L)(x)

|X| =
∑

x∈X K R
F (L)(x)

|X| . (5)

From the following (6), we can calculate the importance of
the any feature f ∈ A − F

SigR( f, F, L) = γ R
F (L)− γ R

F∪ f (L). (6)

4) Algorithm: In general, a feature selection algorithm
contains two crucial factors, which are feature evaluation and
search strategy. In this article, the significance of each feature
is measured by (6), and the forward greedy algorithm is
applied as the search strategy in MS-ECG.

V. METHOD OF MULTI-LABEL CLASSIFICATION

OF ARRHYTHMIA FOR ECG SIGNALS

In this section, we develop a multi-label classification
method of arrhythmia for long-term ECG signals combining
ECG feature learning (MC-ECG) to achieve the goal of one
ECG signal output multiple disease labels at the same time.
MC-ECG solves the multi-label problem that traditional ML
algorithms cannot handle in the process of intelligent ECG
classification.

A. Establish Multi-Label Classification Model Based
on Multiobjective Optimization Method

It is assumed that the optimal low-dimensional feature
subset A� = {a�

1, a�
2, . . . , a�

23} can be obtained by the above
MS-ECG. The reconstruction of ECG signal feature space is
X = [x1, x2, . . . , xn]T ∈ R

n×23. The corresponding multi-
label space of arrhythmia is Y = [ y1, y2, . . . , yn]T ∈ {0.1}n×6.

By learning the coefficient matrix C = [c1, c2, . . . ,
c6] ∈ R

23×6 between ECG feature space X and multi-
label arrhythmia space Y , the mapping relationship between

ECG features and the types of arrhythmia is explored. The
coefficient matrix C should have three characteristics.

1) C can reveal the mapping relationship between X and Y .
2) The specificity of the disease can be captured by the non-

zero term of C. C can generate disease-specific features
of each type of arrhythmia. In the multi-label classifica-
tion task of arrhythmias, different diseases have different
characteristics. Each type of arrhythmia is highly depen-
dent on only a few ECG features. Therefore, compared
with the feature set A�, the disease-specific features for
each disease are sparse.

3) C should include the correlation between diseases.
In view of the comprehensive consideration of the above

three characteristics, the following multiobjective optimization
model is proposed:

min
C

loss(C)+ ϕ�(C)+ ψ�(C) (7)

where loss(·) is a loss function, �(·) is disease correlation,
�(·) is sparse regularization, and ϕ > 0, ψ > 0 are tradeoff
parameters.

In the coefficient matrix C, if the element ci j = 0,
it indicates that the i th ECG feature has no discrimination
on the j th arrhythmia type. On the contrary, if ci j �= 0,
it indicates that the i th ECG feature has discrimination on
the j th arrhythmia type. It also indicates that the i th ECG
feature is the disease-specific feature of the j th arrhythmia
type. The higher the value of element ci j , the more important
the i th ECG feature is to the j th arrhythmia type. The smaller
the value of element ci j , the less important the i th ECG feature
is to the j th arrhythmia type.

B. Embed Disease Correlation

The types of arrhythmias are not independent of each other.
Two strongly related diseases share more features than two
weakly related or unrelated diseases. For example, both AF
and PVC present a certain degree of arrhythmias in the
waveform. These two types of arrhythmia are easy to be
misjudged. They are strongly related diseases and share the
features about ECG rhythm.

Therefore, the multiobjective optimization model should
be embedded the constraint condition of disease correlation.
�(C) is designed as

�(C) = 1

2

n∑
j=l

n∑
i=l

bi j cT
i c j = 1

2
Tr

(
BCT C

)
(8)

where B = [bi j]6×6 indicates the correlation information
between two disease labels di and d j . B ∈ R

6×6 is a
symmetric matrix, in which bi j is the entry of B that reflects
the relationships between two arbitrary diseases. In the label
space, cosine similarity was applied to assess the correlations
between different diseases. zi ∈ R

n was denoted as the i-th
column of Y so as to define the cosine similarity between
two diseases. Thus, Y = [z1, z2, . . . , z6]. It is noted that zi

indicates the distribution of the i-th disease over the training
data. Consequently, the entry of the affine matrix could be
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defined as follows:
bi j = cos

(
zi , z j

) = �zi , z j	
|zi | · |z j | (9)

where i, j ∈ {1.2, . . . , 6}, and bi j could be regarded as a
weight in the regularization term. According to (8), a higher
value of bi j means highly correlated between the i-th and
the j-th diseases. According to (7), more punishment will be
given to cT

i c j if bi j is higher, and optimization will make
cT

i and c j become more similar in columns and sparse in
rows. To fully employ this constraint, the second term in (7)
goes over the entire affinity matrix of the disease correlation.
In this way, the correlations between different diseases are
incorporated into the framework, helping to improve the multi-
label classification.

Combined with (7) and (8), the optimization problem can
be written as

min
C

loss(C)+ ϕ

2
Tr

(
BCT C

) + ψ�(C). (10)

C. Solve Multiobjective Optimization Problem

When solving the multiobjective sparse convex optimization
problem, the traditional method often requires strong condi-
tions to ensure the convergence of the iterative sequence. The
convergence speed is slow and the time cost is high. Therefore,
for the multiobjective optimization model, how to find the
global optimal solution while ensuring the convergence speed
is a challenge. In this article, we conduct the alternating
direction multiplier method (alternating direction method of
multipliers, ADMMs) [27], [28] to solve a convex optimization
problem. By decomposing the coordination process, ADMM
transforms the original multiobjective optimization problem
into a global consistency problem. The global solution is
obtained by solving subproblems alternately, and the conver-
gence speed is fast.

First, the least square loss function and l1-norm are
assumed as

loss(C) = 1

2
�XC − Y �2

F (11)

�(C) = �C �1. (12)

Therefore, combined with (11) and (12), (10) can be
written as

min
C

1

2
�XC − Y�2

F + ϕ

2
Tr(BCT C)+ ψ�C �1. (13)

Second, two auxiliary variables G and H are introduced.
Equation (13) can be written as

min
G,H,C

1

2
�XC − Y�2

F + ϕ

2
Tr(BGT G)+ ψ�C �1

s.t. G = C, H = C. (14)

Third, we transform (14) into its augmented Lagrangian
function form (15)

min
G,H,C

loss(C)+ ϕ

2
Tr(BGT G)+ ψ�(H)+ �L1,G − C	

+ �L2, H − C	 + ε

2

(�G − C�2
F + �H − C �2

F

)
. (15)

By solving the above problem step by step, in each iteration,
G, H, and C will alternate one by one (updating one of the
unknowns while keeping the others fixed), in the following
order:

C → G → H.

[Update C]: In the k + 1 iteration, C is described as

min
C

1

2
�XC − Y�2

F + 〈
Lk

1,Gk − C
〉 + 〈

Lk
2, Hk − C

〉

+ εk

2

(�Gk − C�2
F + �Hk − C �2

F

)
. (16)

The above problem (16) can be solved by taking the gradient
of its objective function with respect to C and setting it to zero.
Ck+1 is

(XT X + 2εk I)−1(XT Y + Lk
1 + Lk

2 + εk(Gk + Hk)
)
. (17)

[Update G]: G is described as

min
G

ϕ

2
Tr(BGT G)+ 〈

Lk
1,G − Ck+1〉 + εk

2
�G − Ck+1�2

F .

(18)

The above problem (18) can be solved by taking the gradient
of its objective function with respect to G and setting it to
zero

Gk+1 = (ϕB + εk I)−1(εk Ck+1 − Lk
1

)
. (19)

[Update H]: H is described as

min
G
ψ� H�1 + �Lk

2, H − Ck+1	 + εk

2
�G − Ck+1�2

F . (20)

H is

Hk+1 = W ψ

εk

[
Ck+1 − Lk

2

εk

]
(21)

where W is a soft threshold operator.
[Update L1,L2]:

Lk+1
1 = Lk

1 + εk(Gk+1 − W k+1) (22)

Lk+1
2 = Lk

2 + εk(Hk+1 − W k+1). (23)

[Update ε]:
εk+1 = min(εmax, ρεk), ρ > 1. (24)

By the above steps, the sparse coefficient matrix C is
obtained to realize simultaneous prediction of multiple labels
for unknown ECG signals. C indicates the mapping rela-
tionship between ECG features and the types of arrhythmia.
Therefore, for an ECG signal whose label information is
unknown, the labels of arrhythmia type can be automati-
cally assigned after feature subset space X obtained through
MS-ECG. In addition, disease-specific features of each type
of arrhythmia can be obtained from C.
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VI. EXPERIMENTS

In this article, the experiments can be divided into two
parts: the verification of the effectiveness about MS-ECG and
MC-ECG.

1) For MS-ECG, we compare it with the other three multi-
label feature selection algorithms, namely MLNB [29],
MDDM [30], and PMU [31]. In the meantime, MLKNN
(K = 10) [32] is used to assess the feature selection
performances of these algorithms. Moreover, to stay
in consistency with these algorithms, the training and
testing set are also utilized. The specific experimental
steps are as follows. First, 117 features were taken as
the input of four multi-label feature selection algorithms
under training set. The output result is the optimal
feature subset for each algorithm. Second, the four kinds
of feature subsets are respectively taken as the input
of MLKNN under test set. The output results are the
occurrence probability corresponding to each label as
the basis for label prediction. Finally, various metrics
are used to evaluate the performance of the multi-label
feature selection algorithms.

2) For MC-ECG, we compare it with the following
state-of-the-art multi-label classification algorithms to
illustrate the performance of classification, including
MLKNN [32], BR [33], CC [34], RankSVM [35],
and LIFT [36]. The specific experimental steps are
as follows. First, we take the feature subset obtained
by MS-ECG as the input of six multi-label classifi-
cation algorithms. Second, these six algorithms train
the mapping relationship between features and labels
under training set, respectively. For example, the sparse
coefficient matrix C is obtained by MC-ECG. Then,
under test set, the output results of six multi-label
classification algorithms are the label prediction. Finally,
various metrics are used to evaluate the classification
performance of the MC-ECG algorithms.

A. Training Setup

For the four multi-label feature selection algorithms,
MS-ECG and MLNB are able to get the feature subset directly.
Nevertheless, MDDM and PMU can only get the feature
selection output by obtaining the ranking list of features.
Hence, to gain comparable results, the feature rank results will
be cut according to the length of feature subset of MS-ECG.
For the comparative methods, the parameter values of each
algorithm are used as the default settings according to the
corresponding literatures.

The values of λ and μ are set from 0.1 to 0.5 with a step
of 0.01 for our proposed MS-ECG, so as to prove that the
performance varies with λ and μ. The experiments imply that
when λ = 0.03 and μ = 0.38, the classification performance
achieved the best for all evaluation metrics. For MC-ECG,
we tune parameters ϕ, ψ in {2−10, 2−9, . . . , 210} and ρ > 1 as
the default settings and report the best results.

B. Evaluation Metrics

Referring to the existing evaluation criteria for multi-label
learning performance, the differences between the predicted

labels (y � ∈ Y �
i ) and the labels of ground-truth (y ∈ Yi )

of each sample (xi) are checkout respectively. The most
classic six multi-label evaluation indicators are adopted [37],
including Hamming loss, ranking loss, one-error, coverage,
average precision, and micro-F1. These six indicators can be
calculated by the following formulas, in which n represents
the total number of samples and q represents the total number
of labels.

1) Hamming Loss:

1

n

n∑
i=1

1

q
|h(xi )
Yi | (25)

where 
 is used to measure the symmetry difference between
two sets. For example, the symmetry difference between
{1, 2, 3} and {3, 4} is {1, 2, 4}. This index indicates the mis-
classification of the sample on a single label, i.e., the absence
of relevant labels in the predicted label set or the presence of
irrelevant labels in the predicted label set.

2) Ranking Loss:

1

n

n∑
i=1

1

|Yi ||Ȳi | |{(y
�, y ��)| f (xi , y �) ≤ f (xi , y ��)| (26)

where Ȳi is the complementary set of Yi in the label space,
and (y �, y ��) ∈ Yi × Ȳi . This index is used to investigate the
occurrence of sorting errors in the sorting sequence of category
labels of samples, that is, irrelevant labels are placed before
relevant labels in the sorting sequence. The smaller this index,
the better the system performance will be, and the optimal
value is 0.

3) One-Error:

1

n

n∑
i=1

|[argmaxy∈Yi
f (xi , y)] /∈ Yi | (27)

where | · | stands for conditional judgment. If the condition
is satisfied, it is 1. While if not, it is 0. The index is used
to investigate the situation that the label at the front of the
sequence does not belong to the related label set in the sorting
sequence of category label of samples. The smaller this index,
the better the performance will be, and the optimal value is 0.

4) Coverage:

1

n

n∑
i=1

maxy∈Yi rank f (xi , y)− 1 (28)

where rank f (·, ·) is the sorting function corresponding to the
real-valued function f (·, ·). This index is used to investigate
the search depth required to cover all related labels in the
sorting sequence of category labels of the sample. The smaller
this index, the better the performance will be.

5) Average Precision:

1

n

n∑
i=1

1

|Yi |
∑
y∈Yi

|{y � | rank f (xi , y �) ≤ rank f (xi , y), y � ∈ Yi }|
rank f (xi , y)

.

(29)

This index is used to investigate the situation that the label
before the relevant label is still the relevant label in the sorting
sequence of category labels of samples. The larger the value of
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Fig. 4. Performance variations for the four algorithms based on (a) average precision, (b) Hamming loss, and (c) coverage.

this index, the better the performance will be, and the optimal
value is 1.

6) Micro-F1:

2
∑q

l=1 TPl

2
∑q

l=1 TPl + ∑q
l=1 FNl + 2

∑q
l=1 FPl

(30)

where TPl represents the number of samples that belong to
the lth label and are also correctly classified as the lth label.
FPl is the number of samples that do not belong to the lth label
but are classified as the lth label. FNl is the number of samples
that belong to the lth label but are not classified as the lth
label. The larger the evaluation criterion, the better the system
performance. When the value is 1, the system performance
will reach the optimal.

VII. RESULTS

A. MS-ECG

For the comparability of performances among all multi-
label feature selection algorithms, the feature subset is fed
to MLKNN as input. Fig. 4 shows the variation trend with the
number of selected features through the six evaluation criteria.
We take average precision, hamming loss, and coverage as
examples for show. In Fig. 4, horizontal axis of each graph
indicates the number of the chosen features, while vertical
axis of each graph indicates classification evaluation metrics.
The proposed algorithm MS-ECG is the red line. As shown
in Fig. 4, MS-ECG achieves the optimal classification perfor-
mance with the increasing number of selected features.

Notice that MS-ECG has a certain number of features that
makes it delivers better performance, and it is in line with the
actual situation. We select the top 23 features and form the
optimal feature subset [15]. These 23 ECG features include
four features in time-domain, three in frequency-domain, 12 in
nonlinear, and four in morphological domain.

To prove the validity of MS-ECG, a series of experiments
are conducted which make quantitative comparisons among
MS-ECG, MLNB, MDDM, and PMU. As is shown in Table II,
various evaluation metrics are illustrated with the optimal
results being emphasized in bold. Moreover, “↓” means “the
smaller the better,” while “↑” conveys that “the larger the
better,” respectively. From Table II, it is clearly illustrated that
MS-ECG outperforms other comparative algorithms in five
evaluation metrics except coverage.

TABLE II

COMPARISON AMONG FOUR MULTI-LABEL

FEATURE SELECTION ALGORITHMS

B. MC-ECG

To verify the effectiveness of MC-ECG, we take the feature
subset obtained from MS-ECG as the input of six multi-
label classification algorithms in Table III, including MLKNN,
BR, CC, RankSVM, LIFT, and MC-ECG. The classification
performance is assessed in six evaluation metrics as shown
in the Table III. It is clearly illustrated that the proposed
MC-ECG is superior in four metrics, including average preci-
sion, Hamming loss, ranking loss, and micro-F1, except that
the best One-error is given by MLKNN and the best Coverage
is given by LIFT.

In fact, these six metrics measure the experimental results
from different aspects. Hamming loss and micro-F1 reflect the
prediction of labels. Average precision, ranking loss, coverage,
and one-error reflect the ranking of labels. It is difficult
for an algorithm to achieve optimal for all metrics [37].
To consider various evaluation indexes, we draw a spider
web to present the comprehensive performance of different
multi-label classification algorithms for the six criteria, as is
shown in Fig. 5. Due to the large differences in predictive
classification performance using different evaluation metrics,
the results in Table III are normalized to 0.1∼0.5, and all
metrics are transformed to achieve the best performance
at 0.5. When the spider web diagram shows rounder and
bigger, it means that the comprehensive performance of the
corresponding classification algorithm is better. Specifically,
the performance of MC-ECG is represented by the red
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TABLE III

COMPARISON AMONG SIX MULTI-LABEL CLASSIFICATION ALGORITHMS

Fig. 5. Spider web diagram showing the comprehensive performance with
different evaluation metrics.

dotted line. We can tell from Fig. 5 that MC-ECG is superior
to the other methods from a comprehensive point of view.

VIII. DISCUSSION

A. Analysis of Superiority of MS-ECG

In MS-ECG, we used multiple kernel method to deal with
multi-label problem. It can adaptively establish the relationship
between the input and output of training samples. Moreover,
multiple kernel learning can map different data by different
kernel functions and different kernel parameters. Therefore,
we constructed multi-label kernelized fuzzy rough set model to
explore the association pattern between ECG features and the
types of arrhythmia. By MS-ECG, we defined the importance
of ECG feature and measured the degree of interdependence
between features and labels to build a consistent and low-
dimensional feature subset.

B. Analysis of Superiority of MC-ECG

The essence of MC-ECG is to reveal different physiological
and pathological mechanisms corresponding to different ECG
features. It explores the mapping relationship between ECG
features and the types of arrhythmia. When the unknown
ECG signal is used as the input, the ECG signal can be
automatically labeled through the mapping relationship that
has been learned. In MC-ECG, we established a multiobjective
optimization model for long-term ECG signals. Besides, the

correlations between types of arrhythmia are discovered to
learn extra latent information and model a practical and stable
relationship. Finally, we achieved the goal of simultaneously
outputting multiple predicted labels for an ECG signal.

C. Comparison With DL Model

Based on CPSC 2018, DL algorithms [38]–[40] are efficient
algorithms to classify ECG automatically. He et al. [38] used
deep neural network (DNN) and LSTM to extract features
from raw ECG signals. The extracted features are concatenated
to form a feature vector which is trained to do the final
classification. Wang et al. [39] used convolutional neural
network (CNN) for arrhythmia detection. Chen et al. [40]
also developed a CNN model to detect and classify cardiac
arrhythmias. DL algorithms have high classification accuracy.
However, comparing with DL algorithms, the proposed frame-
work has two advantages: 1) it performs well in dealing
with multi-label classification problem by predicting multiple
labels for each ECG recording simultaneously, making full
use of multi-label information and 2) our algorithm conducts
feature learning to analyze some specific features containing
discriminative information for each disease and possesses
advantage with respect to interpretability.

IX. CONCLUSION

In this article, we established a framework for multi-
label classification of Arrhythmia with feature selection and
multi-label classification integrated. This framework realizes
synchronously handling the problem of multi-label and high-
dimensional of ECG features. Moreover, this framework
breaks through the technical limitations that the existing
research only use multiclass method cannot give multiple
labels for an ECG at the same time. After the multi-label
feature selection for ECG, a multiobjective optimization clas-
sification model was established to achieve multi-label clas-
sification of ECG signals. In this article, only traditional ML
algorithms are discussed and compared. However, more DL
algorithms with increasing practical applications need to be
verified. In the future, we will put forward a more targeted
optimization to get more suitable for real-time, automatic, and
accurate detection of arrhythmia in dynamic ECG feature set
and multi-label algorithm.
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