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Accurately monitoring heart rate (HR) is important in intensive care unit (ICU) application, which is usually
performed by electrocardiogram (ECG) analysis. However, the contamination of ECG is common and this may
lead to the erroneous estimation of HR. In this study, an improved HR detector, named as signal quality
index (SQI)-based two-step method, was proposed. This method consists of two steps: (1) HR estimation by
SQI-based Kalman filter for single channel signal, (2) SQI-based HR estimation by fusing the results from ECG
and ABP signals. First, two QRS detectors, GQRS and SQRS, were used to obtain SQI and HR from ECG
signal, and the wabp algorithm and a fuzzy logic analysis method were used to obtain SQI and HR values
from ABP signal. Then, HR values derived from ECG and ABP were separately processed by Kalman filter. HR
after Kalman filter were fused based on the signal SQIs, to obtain the fused HR. The method was evaluated
on the set-p (with good signal quality) and set-p2 (with poor signal quality) databases from the PhysioNet/CinC
Challenge 2014. For set-p, mean absolute errors from the fusion of ECG and ABP signals were 0.233, 0.289,
0.417, 0.456, 0.440 and 7.865 beat/min for the six SQI levels (0.9–1.0, 0.8–0.9, 0.7–0.8, 0.6–0.7, 0.5–0.6,
and 0–0.5) respectively. As comparison, for set-p2, the signal quality was relative low, mean absolute errors
from the fusion of ECG and ABP signals were 0.191, 0.391, 0.688, 1.135, 0.921 and 13.32 beat/min for the
six SQI levels respectively. As expected, the fusion method performed better than the single channel signal
(ECG or ABP).

Keywords: Electrocardiogram (ECG), Heart Rate Estimation, Signal Quality Index, Pulse Signal, Kalman
Filter.

1. INTRODUCTION
ECG is a time-varying signal reflecting the electrical activ-

ity of heart which is generated by depolarization and repo-

larization of the atria and ventricles.1 HR estimation, derived

from ECG or other cardiovascular signals, is important in clin-

ical environments, such as intensive care unit (ICU) monitor-

ing. The alarms are triggered when HR exceeds the specified

thresholds.2�3 Therefore, the accuracy of the alarms is important

for prompt treatment and health care of ICU patients. However,

ECG can be severely contaminated by noise and artifacts or even

missing completely.4–6 Therefore, it is difficult for clinicians to

believe the HR estimation from ECG signal without personal

∗Authors to whom correspondence should be addressed.

confirmation. This can also easily lead to alarm fatigue, desensi-

tization and confusion of clinical staff.7–10

Many methods have been used to enhance the accuracy and

robustness of ECG HR estimation. On the occasion when ECG

may be of poor quality or even missing entirely, HR information

can be obtained from other physiological signals, such as pul-

satile signal, typical as arterial blood pressure (ABP) signal.9�10

For ECG signal, HR information can be obtained by perform-

ing the common R-peak detectors, such as gqrs, jqrs, differential

threshold method, etc.11–14 For ABP signal, wabp algorithm and

derivative-based search approaches were commonly used.14�15

There were also other ways for heart beat detection, such as

hidden semi-Markov model (HSMM), data coupling method,

association models, video-based method, etc.14�16–18 Reliable esti-

mation of HR can be obtained by ‘information fusion’ after
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heart beat detection from ECG and ABP separately.19–21 To

determine the weights of HR derived from ECG and ABP, sig-

nal quality index (SQI), therefore, plays a vital role in fusion

of multimodal signals.8�9�22–24 Li et al. proposed a modified

approach for fusing HR derived from ECG and ABP waveforms,

weighted by the Kalman filter and SQIs, and was evaluated on

the open-access database–Multi-Parameter Intelligent Monitoring

for Intensive Care II (MIMIC II) database.9 This work provided a

continuously updating estimation of HR that automatically rejects

untrustworthy data.

However, researchers are further interested in the quantitative

relationship between HR estimation errors and the SQI levels,

and this information lacks in the previous studies. So in this

study, we proposed a SQI-based two-step algorithm for HR esti-

mation from multimodal ECG and ABP signals. We tested the

new method on the open-access multimodal database used for

the PhysioNet/CinC Challenge 2014,13�15 etc. also used the data

from the PhysioNet/CinC Challenge 2014. Sensitivity, positive

predictivity, and the accuracy index induced from them, were

usually used for evaluating the QRS detection results.11�12�18�22�25

However, they only focused on the overall performances. In this

study, we used mean and standard deviation (SD) of HR errors

to evaluate the effectiveness of HR estimation. We especially

focus on quantifying how the estimated HR error changes with

the decreases of the signal quality by dividing the signal quality

into six different ranges.

2. METHODS
2.1. Data

Data are from the PhysioNet/CinC Challenge 2014, which

includes two databases: training database (set-p) and the extended

training database (set-p2).20�25 The set-p includes 100 records

with high signal quality, while set-p2 includes 100 records but

the signal quality is relative poor. Data were sampled at 250 Hz

or 360 Hz. Each record contains four to eight signals; the first is

an ECG signal in most cases, the others are a variety of simulta-

neously recorded physiological signals. In this study, we focused

on the HR estimation from ECG and ABP signals. However,

there are 27 records in set-p2 without ABP signal. Thus these

27 records were excluded for the analysis. The data profile is

shown in Table I.

A SQI-based two-step method for robust HR estimation from

the combination of ECG and ABP signals was proposed. Firstly,

the QRS complexes of ECG signal and the onsets of ABP signal

were detected.26 Then, signal quality was evaluated for ECG and

ABP respectively. Then, HR derived from ECG and ABP were

separately processed by Kalman filter. Finally, HR was fused

using a SQI-weighted method. The absolute error between the

estimated HR and the reference HR was calculated to evaluate

the effectiveness of the proposed algorithm. Figure 1 shows the

flow chart of the proposed method. The detailed methodological

explanations were given later.

Table I. Data profile of the PhysioNet/cinC challenge-2014 databases.

Variables Set-p Set-p2

Used records 100 73
Beats 72415 78618

Record

ECG

ABP

SQI-
weighted

fusion
Evaluation

HR1

HR2 Kalman filter

Kalman filter Reference
HR

SQI1

SQIABP

SQIECG

HRECG

HRABP

HRFUSION

SQI2

Fig. 1. Flow chart of proposed method.

2.2. ECG Processing

2.2.1. HR Estimated from ECG
First, HR1 was calculated from the RR intervals within a 5-s

time window:

HR1 = 60

median�RR interval�
(1)

where the median RR interval was used to avoid the influence of

the extreme RR interval values due to the false detected beat or

missed beat detections.

Then, the derived HR1 was processed by Kalman filter. The

filter combines the past measurement estimation errors with the

new measurement errors to estimate future errors. When the value

of SQI1 in Eq. (7) was greater than or equal to 0.7, or the value

of SQI1 was less than 0.7, there were different filtering methods

The detailed process of the Kalman filter for ECG signal is shown

in Figure 2.

2.2.2. SQI for ECG Signal
QRS complexes were detected by GQRS and SQRS, provided

by the WFDB toolbox.27�28 Then, the ECG signal quality was

evaluated. Firstly, bSQI within a window of � seconds (�= 8 s

in this study) is defined as:

bSQI = num_match

num_GQRS+num_SQRS−num_match
(2)

Kalman filter
parameter initialization

HR_window
startpoint

error(i)=HR1(i)-HR(i)

Y N

HR(i)=Predefined value

SQI1(i)>=0.7

Update Kalman filter parameters

Calculate Kalman_HR1(i) using HR(i),
error(i) and Kalman filter parameters

Kalman_HR1(i)=HR1(i)

HR(i)=HR(i-1)

Note:i is the current moment
HR(i) is an intermediate value of HR.

Y

N

Fig. 2. The running process of the Kalman filter for ECG.
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where num_GQRS and num_SQRS are the numbers of QRS

complex detected by GQRS and SQRS respectively, num_match

is the number of beats detected synchronously. The beat detec-

tions from the two algorithms were set to have agreed on a beat

location if they fell within a 150 ms window. bSQI values were

updated every second.

In addition, sSQI and kSQI, were also calculated. The energy

of QRS complex is mainly centered around 10 Hz and concen-

trated in a 10 Hz frequency band width. Thus sSQI is defined as

sSQI =
{

1 0�5 ≤ SDR ≤ 0�8

0 else
(3)

where SDR is the distribution ratio of power spectral density

(PSD) of 5–14 Hz against 5–50 Hz:

SDR =
∫ 14

5
P�k�w�df∫ 50

5
P�k�w�df

(4)

From the central limit theorem, we know that random uncorre-

lated processes tend to have Gaussian distributions.9 The fourth-

order kurtosis was used to evaluate the similarity between the

signal and Gauss signal, which measures the relative peaked-

ness of a distribution with respect to a Gaussian distribution. The

kurtosis of the signal x is defined as:

kurtosis = 1

M

M∑
i=1

(
x−	




)4

(5)

where 	 and 
 are the mean and SD of x, respectively, M is

the sample number of the signal. The ECG signal with normal

sinus rhythm usually has a kurtosis larger than 4.8. So, kSQI is

given by

kSQI =
{

1 kurtosis > 4�8

0 else
(6)

Thus, we can define the final signal quality for the ECG signal as:

SQI1 =
{

bSQI kSQI = 1 and sSQI = 1

bSQI×� else
(7)

where � = 0�7 is a penalty factor, for reducing SQI1 by 30% if

spectral or statistical noise appears.

Finally, we collected Kalman_HR1 and SQI1 every 2 s within

the length of ECG signal, and used the smallest two as the rep-

resentative HR and SQI of the 2 s interval. The obtained HRECG

and SQIECG will be used for the fusion work.

Pulse-pulse interval
(ppi)

BP negative slope
(nps)

Fig. 3. ABP waveform parameters.

2.3. ABP Processing

The wabp algorithm was used to locate the onsets of the ABP

signals.26 The waveform parameters were extracted from the

onset detection of ABP waveforms.29�30 These parameters are

shown in Figure 3.

2.3.1. HR Estimated from ABP
We also used a 5-s time window to calculate the values of HR

from ABP signal:

HR2 = 60

median�onset interval�
(8)

The derived HR2 should be processed by Kalman filter to obtain

Kalman_HR2 as well. The Kalman filtering method is similar to

the previous one used for ECG signal processing, except for a

special parameter setting, detailed as follows: SQI2≤ 0.7 replace

SQI1 ≥ 0.7.

2.3.2. SQI for ABP Signal
A 8-s time window was also used to align with the ECG signal.

Firstly, the first 20 beats with good signal quality were selected

for the waveform parameters for determining the initial values of

the waveform parameters.

In order to obtain SQIs of ABP signal, i.e., jSQI and wSQI,

a fuzzy logic analysis algorithm, which can reduce false ABP

alarms was used.31 jSQI is a normal/abnormal index. If the value

of waveform parameters mentioned above were in the range as

shown in Eq. (9), jSQI is 0, which indicates the normal beats.

Otherwise, jSQI is 1, which indicates the abnormal beats.

wSQI takes a continuous value between 0 and 1 as signal qual-

ity for each beat. In order to obtain wSQI, a group of compos-

ite variables was calculated based on the waveform parameters

extracted from ABP and the reference values in the base fea-

ture set, which reflect signal changes. The value of wSQI was

SQI interval

SQI interval

SQI interval

Fig. 4. Estimated HR errors against the SQI values on the set-p database.
The number of the signal episodes with 5-s time window are shown for each
of the SQI levels.
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Table II. Mean and SD values (unit: beat/min) of estimated HR errors

on the set-p database at the different SQI levels.

ECG ABP FUSION

SQI level Mean SD Mean SD Mean SD

�0.9 1.0] 0.398 0.551 0.335 0.443 0.233 0.478
�0.8 0.9] 0.367 0.703 0.411 0.934 0.289 0.460
�0.7 0.8] 0.345 1.054 0.506 2.154 0.417 0.715
�0.6 0.7] 1.217 1.691 0.738 2.764 0.456 1.002
�0.5 0.6] 2.208 2.464 0.840 2.712 0.440 0.575
�0 0.5] 7.628 7.311 8.659 8.369 7.865 7.468

determined by the values of these composite variables. Detailed

calculations are shown in Ref. [31].⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

systolic BP�sbp� < 300� mmHg

distolic BP�dbp� > 20� mmHg

pulse BP > 20� mmHg

30 < mean BP < 200� mmHg

20 < HR2 < 200� bpm

mean nps >−40�

�sbp�i�− sbp�i−1��< 20� mmHg

�dbp�i�−dbp�i−1��< 20� mmHg

�ppi�i�−ppi�i−1��< 2/3� seconds

(9)

where i is the current moment. The first column is the decision

parameters of jSQI value. The second column is the unit corre-

sponding to these parameters.

The final signal quality for the ABP signal is defined as

SQI2 =
{

wSQI jSQI = 0

wSQI×0�7 jSQI = 1
(10)

At last, use the similar collecting method as in ECG to obtained

HRABP and SQIABP for the fusion work.

2.4. Fusion Method

The obtained HR values from ECG and ABP respectively were

fused to obtain the fused HR. HRFUSION is defined as:

HRFUSION = SQI2
ECG ×HRECG

SQI2
ECG +SQI2

ABP

+ SQI2
ABP ×HRABP

SQI2
ECG +SQI2

ABP

(11)

2.5. Evaluation Method

The absolute HR errors between estimated HR and reference HR

were calculated. Reference HRs were obtained from the expert

annotations, derived from a 5-s time window and updated for

Fig. 5. Boxplots of the mean and SD values of estimated HR errors on the
set-p database

SQI interval

SQI interval

SQI interval

Fig. 6. Estimated HR errors against the SQI values on the set-p2 database.
The number of the signal episodes with 5-s time window are shown for each
of the SQI levels.

each 2-s time window. The results were divided into 6 classes

according to the SQI levels. For evaluating the fused method, the

mean of SQIECG and SQIABP corresponding to the same 5-s signal

window was defined as the fused SQI value, i.e., SQIFUSION.

3. RESULTS
3.1. Results on Training Set-p Database

Figure 4 shows the estimated HR errors against the SQI values

on the set-p database. Table II and Figure 5 show the numerical

results and the boxplots. Mean absolute errors for ECG signal

were 0.398, 0.367, 0.345, 1.217, 2.208 and 7.628 beat/min for the

six SQI levels respectively, and were 0.335, 0.411, 0.506, 0.738,

0.840 and 8.659 beat/min respectively for ABP signal. Mean

absolute errors after fusion were 0.233, 0.289, 0.417, 0.456,

0.440 and 7.865 beat/min respectively. SD values of the esti-

mated HR errors were also shown, with the similar phenomenon

as the mean absolute errors.

3.2. Results on Training Set-p2 Database

Then we tested on the relative poor signal quality database, i.e.,

set-p2 database. Figure 6 shows the estimated HR errors against

the SQI values on the set-p2 database by using ECG and ABP

separately, as well as using the fusion of these two signals.

Table III. Mean and SD values (unit: beat/min) of estimated HR errors

on the set-p2 database at the different SQI levels.

ECG ABP FUSION

SQI level Mean SD Mean SD Mean SD

�0.9 1.0] 0.317 0.780 0.406 1.218 0.191 0.366
�0.8 0.9] 0.503 1.693 0.775 3.411 0.391 1.076
�0.7 0.8] 0.375 2.351 1.134 4.508 0.688 1.365
�0.6 0.7] 2.450 6.529 1.770 5.411 1.135 2.463
�0.5 0.6] 5.646 12.48 2.263 7.015 0921 2.429
�0 0.5] 17.61 15.91 19.99 19.76 13.32 15.46
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Fig. 7. Boxplots of the mean and SD values of estimated HR errors on the
set-p2 database.

Table III and Figure 7 show the numerical results and the box-

plots. Mean and SD of absolute errors for ECG, ABP and after

fusion show similar phenomenon as in set-p. Both mean absolute

errors and their SD values were small at high SQI levels and

quickly increased when the SQI decreased. The results showed

that the fusion method had potential to reduce the estimated error

especially for poor signal quality signals.

4. DISCUSSION
Previous methods for robust HR detection from multimodal

signals used beat-to-beat estimation, which performed well in

processing bradycardia/tachycardia events, but had difficulties

in processing the ventricular tachycardia in the presence of

noise and artifacts.18 Data coupling-based method has advantage

that heart beats can be more easily detected in noisy parts of

the signal.11 However, its performance could not achieve high

level when dealing with noise-free signal. In addition, HR can

also obtain from only photoplethysmogram (PPG) signal.32–36

PPG-based method has simpler hardware implementation. How-

ever, it is sensitive to motion artifacts. Besides,2�14 etc. used set-p

and set-p2 as a whole to evaluate the HR results. Thus there was

no specific estimation for ECG and ABP signals respectively.

The present study proposed a SQI-based two-step algorithm

for HR estimation. Mean and SD of the absolute HR errors

increase gradually as the signal quality drops, whether in the sin-

gle channel signal or the fusion of ECG and ABP. Besides, HR

estimation after fusion is more accurate than that from the single

channel signal in almost every SQI level. Although we expected

the mean and SD of the absolute HR error after fusion are smaller

than those from the single channel signal, exceptions exist, such

as the mean absolute error after fusion in SQI levels of (0.7, 0.8]

and [0, 0.5] in set-p database, in SQI level of (0.7, 0.8] in set-p2

database, are a little bit larger than those from the single channel

signal. These phenomena may be due to the fact that SQIFUSION

is the mean of SQIECG and SQIABP. One channel with very small

SQI will affect the fusion results. This should be improved in the

future. ICU alarm is based on HR estimation in clinical monitor-

ing. The proposed method can serve as an efficient method since

it performs well in most cases.

5. CONCLUSION
A simple SQI-based two-step method for heart beat estimation

by combining ECG and ABP signals were proposed. A total of

151,033 beats were used for developing and testing the proposed

algorithm. Based on the feature detectors for ECG and ABP

signals, as well as the signal quality indices, we systematically

tested the changes of the calculated HR errors with the changes

of signal quality. The results showed that the method enhanced

the accuracy of robust HR estimation, especially for the poor

signal quality records.
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