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ABSTRACT To date, various information entropy methods have been employed to evaluate complexity
within physiological time series. However, such methods cannot discern different levels of nonlinear chaotic
properties within time series, indicating that incorrect results are yielded due to noise. Herein, a novel
permutation-ratio entropy (PRE) method was proposed and compared with the classical permutation entropy
(PE) method, multiscale PE with scale factors 4 and 8 (MPE_S4 and MPE_S8). Simulations with clean
logisticmapping series and the logisticmapping series plus noisewith a signal-to-noise ratio of 20 dB showed
that only PRE monotonically declined with complexity reduction within time series for all 12 combinations
of parameters (time delay τ and embedded dimension m). By contrast, PE only monotonically decreased at
three parameter combinations for the clean logistic series and failed at all 12 parameter combinations for
the logistic series plus noise, and moreover, MPE_S4 and MPE_S8 failed to monotonically decline for the
clean logistic series and the logistic series plus noise at all parameter combinations. Results of surrogate
data analysis indicated that PRE could more effectively measure the deterministic components of nonlinear
within time series than PE, MPE_S4 and MPE_S8. In addition, the parameter m could enable PE, MPE_S4,
and MPE_S8 to yield incorrect results, but it could not do so for PRE. Both PRE and PE were relatively
stable on various parameters of τ . Interictal and ictal electroencephalography (EEG) recordings from the
Bonn database and the CHB-MIT scalp EEG database were also observed, and the results indicated that
the PRE could accurately measure the complexity of EEG recordings, as shown by higher entropy values
yielded from interictal intracranial EEG recordings versus those yielded from ictal ones (p < 0.01).

INDEX TERMS Permutation-ratio entropy (pre), complexity, chaotic properties, physiological time series.

I. INTRODUCTION
Permutation entropy (PE) has been widely used to analyze
complexity within time series because of its favorable per-
formance [1]–[3]. Yan et al. [2] employed PE to charac-
terize working status of rotary machines. PE could provide
satisfactory results when detecting weak abrupt information
hidden within time series [3]. In biomedical applications,
Cao et al. [4] employed PE to identify different phases of
epileptic activity in the intracranial EEG signals recorded
from three epileptic patients. Nicolaou and Georgiou [5]
investigated the use of PE as a feature for automated epileptic
seizure detection. The study of Li et al. [6] demonstrated
PE can be used not only to track the dynamical changes of
EEG data, but also to successfully detect pre-seizure states.

Veisi et al. [7] used PE to classify normal and epileptic EEG,
and classification result for clean EEG recordings was up to
97% and more than that for highly noisy EEG recordings.
Generally, physiological signals are weak nonlinear time
series, and they are usually contaminated by noise and other
random components. Therefore, it is difficult to accurately
measure the inherent nonlinear complexity within a given
physiological signal. The PE method can be used to measure
the complexity of physiological series because it is more
sensitive to abrupt change of signal and dynamic changes
compared with other information entropy methods [3], [4].
However the PE method is performed on a symbol series
instead of an original time series so that it loses details
within series, and the method is based on sorting among data
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points of time series, which means that it neglects differ-
ent degrees of amplitude among data points. Consequently,
the PE method loses some information regarding the ampli-
tude of time series and can provide incorrect results when
measuring the complexity of physiological signals. Fig. 1
shows loss of amplitude information of PE so that three
different series are sorted as the same series by PE.

FIGURE 1. Amplitude information loss of PE.

Therefore, variants of PE have been designed to further
improve performance. Bian et al. [8] proposed a modified
PE method to map equal values onto the same symbols
(ranks), allowing for a more accurate characterization of sys-
tem states. Another common variant is multiscale PE (MPE),
which uses various scale factors to reflect the detailed infor-
mation within time series [9]–[11]. Liu et al. [9] employed
MPE to analyze electrocardiogram signals. Li et al. [10]
used MPE to analyze electroencephalography (EEG) record-
ings during sevoflurane anesthesia. The modified PE method
solves only a greater number of equal values existed in the
observed time series. However, it cannot yet reflect the ampli-
tude difference of time series. The MPE exhibits only the
trends of entropy values across time scales. Yi and Shang [12]
and Fadlallah et al. [13] calculated weights by applying the
variance of each neighbor vector to reflect the amplitude dif-
ference of time series, and this method could achieve satisfac-
tory results on financial time series. However, the weighted
PE method is more suited to stronger signals with consider-
able amplitude information [12]. Actual physiological signals
are weak time series collected from the body that can easily
be contaminated by noise and body motion, so the inherent
amplitude of physiological signals is affected by random
components. Thus, the weighted PE may not be suitable for
use with physiological signals.

In this study, a novel permutation-ratio entropy (PRE)
method was proposed for evaluating the complexity of time
series. This method could reflect difference of amplitude
between two adjacent data points in a time series. The per-
formance of the PREmethod was compared with the classical

PE, theMPEwith scale factor 4 (MPE_S4) and theMPEwith
scale factor 8 (MPE_S8) for both artificial time series and real
EEG recordings obtained from the open Bonn database and
the CHB-MIT scalp EEG database.

II. METHOD AND MATERIALS
A. THE CLASSICAL PE
The computation of PE is not relatively complexity. A given
time series is transformed into a symbol series with relatively
few symbols. After the symbolization it is possible to con-
struct symbol series by collecting groups of symbols together
in temporal order [14]. The detailed computation process of
PE as follows.

According to the reconstruction theory, a time series
x(i), i = 1, 2, ..., n, can be reconstructed as Eq. (1), as
shown at the bottom of this page, where m is the embedded
dimension and τ is the time delay.
Each row X (i) of the reconstruction matrix X can be con-

sidered as a reconstructive component. Thus, the total number
of reconstructive components is n− (m− 1)τ . It can be seen
that for a given value of i, them real values X (i) are associated
with numbers from 1 to m, and each X (i) can be arranged in
an increasing order as [14]

x(i+ (j1 − 1)τ )) ≤ x(i+ (j2 − 1)τ ))

≤ · · · x(i+ (jm − 1)τ )) (2)

where j1, j2, ..., jm represent the original position of each
element in X (i). If two or more elements in X (i) that have
the same value (e.g., x(i + (j1 − 1)τ ) = x(i + (j2 − 1)τ ))
can be sorted according to their original positions j1 and j2,
then x(i + (j1 − 1)τ ) ≤ x(i + (j2 − 1)τ ) when j1 ≤ j2.
After the aforementioned sorting process, the matrix X can
be described as a two-dimensional form as Eq. (3), as shown
at the top of the next page.

Then, each sorted X (i) is transformed into a sequence of
integers j1, j2, ..., jm. Thus, each sorted X (i) is associated
with a permutation of the number sequence 1, 2, ...,m. Dis-
parate permutations represent different patterns. Beingm! the
maximum number of distinct patterns capable of representing
the analyzed time series, the probability distribution for these
distinct patterns is p1, p2, ..., pk where k ≤ m!. According to
the Shannon entropy, the PE for the time series is defined as:

Hp = −
k∑
j=1

Pj ln(Pj) (4)



X (1)
...

X (i)
...

X (n− (m− 1)τ )

 =


x(1) x(1+ τ ) · · · x(1+ (m− 1)τ )
...

... · · ·
...

x(i) x(i+ τ ) · · · x(i+ (m− 1)τ )
...

... · · ·
...

x(n− (m− 1)τ ) x(n− (m− 2)τ ) · · · x(n)

 (1)
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Xn−(m−1)τ,m =



X (1, 1) X (1, 2) · · · X (1,m)
...

... · · ·
...

X (i, 1) X (i, 2) · · · X (2,m)
...

... · · ·
...

X (n− (m− 1)τ, 1) X (n− (m− 2)τ, 2) · · · X (n− (m− 1)τ,m))

 (3)

Finally a normalized PE is given as

PE =
Hp
lnm!

(5)

The classical PE algorithm has been detailed in [1] and [15].

B. MPE
MPE has to perform multiple successive coarse-grained pro-
cesses for time series before calculating PE of the series. For
a time series x(i) of length n, multiple successive coarse-
grained processes are performed by averaging the time data
points within non-overlapping windows of increasing length
s, which is called scale factor. Each element of the coarse-
grained time series ysj is calculated as follows

ysj ==
1
s

js∑
i=(j−1)s+1

xi, 1 ≤ j ≤
n
s

(6)

where n/s is the length of each coarse-grained time series.
After multiple successive coarse-grained processes, the PE
for each coarse-grained time series is calculated. The detailed
MPE algorithm has been described in [9]–[11].

In this study, scale factors 4 and 8were selected to calculate
MPE respectively.

C. DEFINITION OF PRE
A new relation matrix B is constructed and each element of
B(i, j) is defined as

B(i, j) = [X (i, j)/X (i, j− 1)]

1 < i < n− m− 1, 2 < j < m (7)

where B(i, 1) = 0. Hence, the matrix B represents a relation-
ship between adjacent elements.

The number of new patterns c must be calculated after the
relation matrix B is achieved. Let B(i) be the ith row vector of
matrix B, and c(i) be the number of the ith pattern, 1 ≤ i ≤
n−m− 1, and the initial of c(i) is 1. The calculation process
of c is detailed as follows.

For each B(i), its corresponding c(i) increases 1 when
another vector B(j), (i 6= j) of matrix B is considered the
same pattern as B(i), that is, B(i) is equal to B(j) or their
Pearson correlation coefficient r is ≤ −0.9 or ≥ 0.9, then
the B(j) is removed from the matrix B to avoid over counting
while c(j) is set to 0. It can be seen that the maximum total
number of patterns c is n − m − 1 when each vector of the
matrix B represents new pattern. Finally, the total number
of patterns c contained in the matrix B can be obtained.

In this process, the correlation coefficient r reflects levels
of similarity between patterns. According to rule of thumb
for interpreting the strength of the correlation [16], [17], two
patterns own very high correlation when the absolute value
of their r is larger than 0.9.
Then, the probability Pi of the pattern c(i) is calculated as

Pi = c(i)/
k∑
i=1

c(i) (8)

where k is the total number of patterns c, 1 ≤ k ≤ n−m− 1.
According to the Shannon entropy, PRE is defined as

follows

pre = −
k∑
j=1

Pjln(Pj) (9)

The total number of patterns achieves the maximum n −
m − 1 when each row B(i) in the matrix B represents a new
pattern, thus, the maximum PRE is

premax = −
n−m−1∑
j=1

1
n− m− 1

ln(
1

n− m− 1
) (10)

Lastly, the normalized PRE can be yielded as follows:

PRE = pre/(premax) (11)

D. SIMULATED DATA
In this study, various artificial sequences, including Gaus-
sian noise, logistic (Logi) mapping series and MIX(k) time
series were used to observe the performance of PRE method.
Gaussian noise and MIX(k) series were used to demonstrate
the sensitivity of PRE to its parameters m and τ , whereas
Logi series were employed to measure the monotonicity of
PRE when complexity levelµ of the models varied. Gaussian
noise was yielded by the functionwgn inMATLAB. The Logi
series is given by

xn+1 = µ× xn × (1− xn), 1 < µ ≤ 4 (12)

where µ is an adjustable parameter, and the corresponding
Logimapping series (i.e., Logi3.6, Logi3.7, Logi3.8, Logi3.9,
and Logi4.0) are identified as chaotic series when the values
of µ are equal to 3.6, 3.7, 3.8, 3.9, and 4.0, respectively. The
Logi mapping series is regarded as a periodic series when
µ = 3.5. The MIX(k) series of N points, where the range
of k is between 0 and 1, is a Logi3.5 where N × k randomly
chosen points have been replaced by random noise.
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In this study, 20 samples were generated for each of the
aforementioned artificial time series.

E. SENSITIVITY ANALYSIS OF PRE PARAMETERS
The performance of complexity measures may be affected by
parameters of the measures. Thus, the sensitivity analysis of
PRE to the parameters must be conducted.

The first test analyzed the effect of embedding dimension
m and time delay τ on PRE and consisted of two schemes.
The first scheme was proposed with values of τ varying from
1 to 12 in steps of one while m was equal to 6, and the second
scheme was performed with m varying from 3 to 12 in steps
of one while τ was equal to 6. In this test, the lengths of all
time series were assigned to 2000.

F. MONOTONICITY ANALYSIS OF PRE
The objective of this test was to determine if PRE exhib-
ited monotonicity with increasing chaotic properties within
time series. For this purpose, the Logi mapping series
were employed with different chaotic levels (i.e., Logi4.0,
Logi3.9, Logi3.8, Logi3.7, Logi3.6, and Logi3.5) with a
length of 2000.

G. EFFECTS OF NOISE ON PRE
In practical applications, physiological signals are usually
contaminated by noise, which means it is difficult to distin-
guish system complexity. Hence, the signal complexity mea-
sured may be ambiguous even reversed at some complexity
levels in noisy environments [18]. This test was designed
to evaluate the complexity of the clean Logi mapping series
plus noise (i.e., the clean Logi3.5, Logi3.6, Logi3.7, Logi3.8,
Logi3.9, and Logi4.0 plus noise). In this test, Gaussian noise
was added to the clear Logi mapping series on a predeter-
mined signal-noise ratio (SNR), and the SNR was defined as
follows:

SNR = 10× log10(
Ps
Pn

) (13)

where Ps and Pn denote the power of the clean signal and
power of the noise, respectively. In most cases, the main
waveform of physiological series cannot be identified when
SNR ≤ 10 dB, indicating that the series cannot be used by
clinical purpose. Hence, the SNR was set to 20 dB in this
test.

In this study, surrogate data analysis was also used to
further validate effects of noise on the PRE, PE, MPE_S4 and
MPE_S8 methods. Initially, the technique basically of sur-
rogate data analysis needs to specify a linear process as a
null hypothesis, then several surrogate data sets according
to the null hypothesis are generated. Finally a discriminating
statistic is calculated for the original time series and all surro-
gate sets. If the values computed from the surrogate data are
significantly different from those computed from the original
data, then the null hypothesis is rejected and nonlinearity is
detected [19]. In this study, the null hypothesis was that the
surrogate data were consistent with the mean and variance

of the original time series, and this hypothesis was generated
through the linear correlation of Gaussian process. According
to the null hypothesis, 20 surrogates for each realization of the
logistic mapping (Logi4.0) process were initially generated
using the Fourier transform algorithm [19]. The surrogate
data could contaminate the complex structures in the logistic
mapping process and increase the irregularity of the time
series.

H. ANALYSIS OF REAL PHYSIOLOGICAL SERIES
In this study, two kinds of real epileptic EEG data were
used to validate performance of PRE, and one was a real
intracranial epileptic EEG data, the other was a scalp epileptic
EEG data. In fact the intracranial epileptic EEG data were
relatively clean because the data were recorded directly in
the surface of brain, whereas the scalp epileptic EEG data
were relatively easy to be contaminated so that the data
contained more noise than the intracranial EEG data. The
real intracranial epileptic EEG data were obtained from the
Bonn database which was freely available online [20]–[22].
The data consisted of five datasets: A, B, C, D, and E. Sets A
and Bwere recorded from five healthy subjects. Sets C, D and
E consisted of EEG recordings collected from five patients
with epilepsy, of which sets C and D consisted of interictal
recordings, whereas set E contained only ictal recordings
from epilepsy patients. Each dataset contained 100 recordings
with 23.6 seconds in duration. All recordings were sampled at
173.61Hz, whichmeans that the length of each recordingwas
approximately 4097 points. In this study, sets D and E were
used to evaluate the performance of PRE. Detailed informa-
tion regarding the five datasets is available online [22].

The scalp EEG data were taken from the CHB-MIT EEG
database. The scalp EEG datasets were collected from 23 sub-
jects (5 males, ages 3-22, and 17 females, ages 1.5-19, and
subject 23 was a new case) with sampling rate 256 Hz
[23], [24]. All subjects were from epileptic patients of the
Children’s Hospital Boston, and the subjects were moni-
tored for up to several days following withdrawal of anti-
seizure medication in order to characterize their seizures.
For the EEG recordings of each subject, the recorded fre-
quencies and durations of the seizures were different. The
start and stop times of each epileptic seizure could be
obtained from the annotation files of the CHB-MIT EEG
database, and the times were signed by a professional elec-
troencephalographer through examination of the EEG data.
In this study, we firstly excluded the channel that was too
short or severely contaminated by random noise. So we chose
23 subjects and then selected channel 9 in each subject, and
we could get the ictal EEG data on the basis of the start and
stop times of each epileptic seizure. Finally we generated
920 ictal recordings and interictal recordings with length
of 4000 respectively.

We also calculated the classical PE, MPE_S4 and
MPE_S8 for the aforementioned simulations and the real
EEG recordings to compare performance with PRE.
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III. RESULTS
A. RESULTS OF EFFECTS OF PARAMETERS
Fig. 2 shows the change trend of PRE, PE, MPE_S4 and
MPE_S8 for Gaussian noise, MIX40, and MIX10 with time
delay τ from 1 to 12 when the parameter m = 6. As illus-
trated in Fig. 2, both PRE and PE remained relatively stable
on all of τ for the three aforementioned artificial series.
MPE_S4 decreased with increasing of τ for MIX40 and
MIX10, and MPE_S8 was observed to descend for all three
artificial series with increasing of τ . For PRE, PE and
MPE_S4, Gaussian noise had the highest complexity val-
ues at all τ , followed by the MIX40 and MIX10 series.
MPE_S8 values of Gaussian noise overlapped with that of the
MIX40, and MPE_S8 for the MIX10 yielded the minimum
values.

FIGURE 2. Change curves of PRE, PE, MPE_S4 and MPE_S8 for artificial
time series with τ varying from 1 to 12 when m = 6. (a) PRE, (b) PE,
(c) MPE_S4 and (d) MPE_S8.

Fig. 3 illustrates the values of PRE, PE, MPE_S4 and
MPE_S8 for the three artificial time series (i.e., for Gaus-
sian noise, MIX40 and MIX10 with various values of m
from 3 to 12 when τ = 6). As shown in Fig. 3, PRE,
PE and MPE_S4 for Gaussian noise achieved higher values

FIGURE 3. Change curves of PRE, PE, MPE_S4 and MPE_S8 for artificial
time series with m varying from 3 to 12 when τ = 6. (a) PRE, (b) PE,
(c) MPE_S4 and (d) MPE_S8.

than that for the MIX40 and MIX10, whereas MIX10 again
yielded the lowest values for both PRE and PE. The values of
PRE for Gaussian noise, with MIX40 and MIX10 increasing
monotonically with increasing m from 3 to 12. However,
the curves of PE, MPE_S4 and MPE_S8 for the three arti-
ficial time series decreased monotonically with increasing
m. Notably, differences between PRE values for Gaussian
noise and MIX40 on all of m increased with increasing m,
but differences between PE values for Gaussian noise and
MIX40 decreased with increasing m, to the extent that even
PE overlapped when m = 12. The curves of MPE_S8 for
three artificial time series overlapped when m = 7, 8, 9, 10,
11 and 12 respectively.

B. RESULTS OF MONOTONICITY ANALYSIS OF PRE
Fig. 4 shows PRE, PE, MPE_S4 and MPE_S8 for Logi4.0,
Logi3.9, Logi3.8, Logi3.7, Logi3.6, and Logi3.5 with
12 combinations of the parameters τ and m (i.e., values of
τ varying from 2, 6, and 10 and values of m varying from
3, 5, 7, and 9). PRE decreased monotonically in the order
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FIGURE 4. Curves of PRE, PE, MPE_S4 and MPE_S8 on the clean logistic mapping series.

Log4.0, Logi3.9, Logi3.8, Logi3.7, Logi3.6, and Logi3.5 for
all 12 parameter pairs (τ , m). However, PE only decreased
monotonically in the aforementioned order for two parameter

pairs (i.e., 2, 7 and 2, 9). MPE_S4 and MPE_S8 yielded
consistent values for Logi4.0, Logi3.9, Logi3.8, Logi3.7, and
Logi3.6 at all parameter combinations.
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FIGURE 5. Curves of PRE, PE, MPE_S4 and MPE_S8 on the clean logistic mapping series plus Gaussian
noise (SNR = 20 dB).

C. RESULTS OF NOISE EFFECT
Fig. 5 shows PRE, PE, MPE_S4 and MPE_S8 for
noisy Logi mapping series (i.e., Logi4.0 plus Gaussian
noise, Logi3.9 plus Gaussian noise, Logi3.8 plus Gaus-
sian noise, Logi3.7 plus Gaussian noise, Logi3.6 plus

Gaussian noise, and Logi3.5 plus Gaussian noise) with
12 combinations of the parameters τ and m (i.e., values of
τ varying from 2, 6, and 10 and values of m varying from
3, 5, 7, and 9). As shown in Fig. 5, the values of PRE
continue to decrease monotonically in the following order:
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FIGURE 6. Curves of PRE, PE, MPE_S4 and MPE_S8 on the Logi4.0 and surrogate data.

Logi4.0 plus Gaussian noise, Logi3.9 plus Gaussian noise,
Logi3.8 plus Gaussian noise, Logi3.7 plus Gaussian noise,
Logi3.6 plus Gaussian noise, and Logi3.5 plus Gaussian

noise with all 12 combinations of the parameters τ and m.
However, PE did not decreasemonotonically in the aforemen-
tioned order for all parameter combinations. MPE_S4 and
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MPE_S8 kept stable for all noisy Logi mapping series at all
parameter combinations.

Fig. 6 shows results of the surrogate data analysis. The
values of PRE increased significantly for all 12 combinations
of the parameters τ and m. However, PE did not demon-
strate discernible increases when surrogate data was used
for all parameter combinations except two combinations, i.e.
(2, 5) and (2, 7). The values of MPE_S4 exhibited obviously
increase between the Logi4.0 and the surrogate data for nine
parameters combinations, i.e., (2, 5), (2, 7), (2, 9), (6, 7),
(6, 9), (10, 7) and (10, 9), but MPE_S8 did not distinguished
when m = 3.

D. RESULTS USING INTRACRANIAL EEG RECORDINGS
Fig. 7 presents the mean and standard deviation of PRE, PE,
MPE_S4 and MPE_S8 values for both the real interictal and
ictal groups taken from the Bonn database. The independent t
test was performed to compare statistical differences in PRE,
PE, MPE_S4 and MPE_S8 values between the interictal and
ictal groups. Both PRE and PE had higher values for the inter-
ictal group than for the ictal group at allm. The differences in

FIGURE 7. PRE, PE, MPE_S4 and MPE_S8 for the inter-ictal EEG recordings
and ictal EEG recordings taken from the intracranial EEG recordings when
τ = 6,m = 3,5,7,9. The p-value obtained from an independent samples
t-test. (NS represents p > 0.05, * represents p < 0.05, and ** represents
p < 0.01)

PRE values between the two groups were highly significant
at every m (i.e., m = 3, 5, 7, and 9) because all p values were
considerably lower than 0.01. The differences in terms of PE
between the two groups were highly significant at m = 7
and 9. MPE_S4 between two groups exhibited significant
difference at m = 3, 5 and 7. MPE_S8 values between the
two groups had no significant difference at all m (p > 0.05).

E. RESULTS USING SCALP EEG RECORDINGS
Fig. 8 shows the mean and standard deviation of PRE, PE,
MPE_S4 and MPE_S8 values for both the real interictal and
ictal groups taken from the CHB-MIT EEG database. The
PRE, PE and MPE_S4 methods yielded higher values for the
interictal group than that for the ictal group. The PRE values
between two groups were highly significant difference when
m = 5, 7, and 9 (p < 0.01), and the PE values between two
groups were highly significant when m = 7 (p < 0.01). For
MPE_S4 and MPE_S8, highly significant differences were
observed between two groups when m = 5.

FIGURE 8. PRE, PE, MPE_S4 and MPE_S8 for the inter-ictal EEG recordings
and ictal EEG recordings taken from the scalp EEG recordings when
τ = 6,m = 3,5,7,9. The p-value obtained from an independent samples
t-test. (NS represents p > 0.05, * represents p < 0.05, and ** represents
p < 0.01)
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IV. DISCUSSION
A satisfactory algorithm should be affected as little as pos-
sible as by its parameters. As illustrated in Fig. 2, PRE and
PE were not sensitive to the parameter τ , because the two
entropymethods could maintain relatively stable values when
τ varied from 1 to 12.Moreover, PRE, PE andMPE_S4 could
properly discern the complexity of Gaussian noise, MIX40,
and MIX10 at all τ , because the values of the three entropy
methods at each τ decreased in the order of Gaussian noise,
MIX40, and MIX10. Fig. 3 shows that PRE is satisfactory in
appropriately distinguishing the complexity of three artificial
time series, because the entropy method at all m monoton-
ically decrease in the order of Gaussian noise, MIX40, and
MIX10. PE could properly discern three artificial series when
the values of m were smaller. However, the performance of
PE decreased when m was greater than 6, and PE could not
discern the complexity of Gaussian noise and MIX40 when
m was equal to 12, because the values of PE for Gaussian
noise and MIX40 overlapped. According to Eq.(10) and (11),
the embedded dimension m can affect the PRE method, and
the values of PRE increase with the increasing of m. Sim-
ilarly, PE is also affected by the parameter m according to
Eq.(5), and the values of PE decrease with the increasing
of m. As illustrated by Fig. 3, the theoretical analysis is in
accordance with experimental results.

Furthermore, an important characteristic of PRE is that the
algorithm can reflect amplitude change of time series so that
PRE can more accurately calculate number of new patterns
within time series than PE. In fact amplitude changes of Gaus-
sian noise are much more than that of MIX40 because Gaus-
sian noise is more irregular than MIX40. So the PRE values
of Gaussian noise were higher than that of MIX40. New
patterns within time series calculated by PE are not accurate
because the method neglects many changes of amplitude of
time series. As shown in Fig. 3, PE could not properly discern
Gaussian noise and the MIX40 when the values of m were
greater than 10. In fact the bigger m means a reconstructed
vector is longer, andmore information is contained in the vec-
tor, so the bigger m helps PRE to obtain much more new pat-
terns within time series. As shown in Fig. 3, PRE could more
cleanly distinguish Gaussian noise and the MIX40 when m
was relatively larger. But for PE, the larger m yields the
smaller PE value so that the PE values of Gaussian noise and
that of the MIX40 cannot be discriminated because the PE
values of the two time series are smaller and easy to overlap.
Fig. 2 and Fig. 3 illustrated that PRE can maintain more
favorable performance compared with the PEmethod. In con-
trast, MPE based on PE neglects more changes of amplitude
of time series because the coarse-grained process of MPE
loses essential data. As illustrated in Fig. 3, the greater scale
factors s the MPE selected, the more apparent MPE could not
distinguish Gaussian noise, the MIX40 and MIX10.

An effective algorithm should accurately differentiate
complexity levels within signals rather than confusing them.
As illustrated in Fig. 4, PRE could properly discern the

complexity of Logi mapping series, because PRE decreased
monotonically for 12 pairs of the parameter τ and m as
follows: Logi4.0, Logi3.9, Logi3.8, Logi3.7, Logi3.6, and
Logi3.5. By contrast, PE could only exhibit proper change
trends when the combinations of the parameters τ and m
were 2, 7; and 2, 9. MPE_S4 and MPE_S8 cannot properly
discern at all parameter combinations. The results indicate
that PRE has superior performance than PE for distinguishing
chaotic properties within time series because it can more
accurately calculated new patterns within time series but
PE cannot, because PE ignores amplitude changes of time
series. Both MPE_S4 and MPE_S8 failed to discern chaotic
properties within time series because number of new patterns
within time series were inaccurate since calculation of two
algorithms needed to average time data points within non-
overlapping windows so that more changes of time series
were ignored.

Another common view is that a satisfactory algorithm
should be able to accurately observe inherent properties
within signals contaminated by noise. As shown in Fig. 5,
the results of a noise effect demonstrated that PRE had satis-
factory performance at all 12 combinations of the parameters
τ and m for identifying chaotic properties within time series
contaminated by noise, but PE, MPE_S4 andMPE_S8 failed.
PRE is thus the most robust among PE, MPE_S4 and
MPE_S8 in the contaminated time series. In fact, the three
methods i.e., PE, MPE_S4 and MPE_S8 neglect not only
noise but also chaotic properties within time series so that
values of three methods keep constant or slight fluctuation
for all of noisy Logi mapping series. Results of surrogate
data analysis indicated PRE had a satisfactory performance
for measuring nonlinear complexity within noisy time series.
This is a critical aspect to consider while choosing a suitable
measure for real field data applications.

Regarding the EEG data obtained from the Bonn database,
the complexity of interictal EEG recordings from epilepsy
patients is generally considered greater than that of ictal
recordings [25]. In Fig. 7, PRE accuratelymeasured the inher-
ent complexity of intracranial EEG recordings by yielding
greater PRE values for the interictal group. However, PE
failed to provide accurate measurements. As shown in Fig. 8,
PRE also exhibited a satisfactory performance for measuring
complexity of the scalp epileptic EEG data. In general, PE
lost a lot of detail information within time series including
not only noise but also some inherent information so that PE
could not exhibit a satisfactory performance to distinguish the
interictal and ictal group. MPE_S4 and MPE_S8 were also
similar to PE.

The performance of PRE is better than that of PE for vari-
ous simulated data and real data because the method can pro-
vide more accurate number of patterns within time series than
the classical PE. The PE loses detailed information within
time series because each row of the reconstruction matrix
needs to be mapped into a sequence of integers j1, j2, ..., jm,
so the maximum number of patterns within time series is m!.
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For example, the number of all possible patterns is 6 when
m = 3, however for the original time series instead of a
sequence of integers, the number of patterns within series is
larger than 6. For the PREmethod, it runs on the original time
series. Another important reason is that PRE can also reflect
diverse amplitudes of time series to contribute to keep more
details original time series, but the PE cannot.

V. CONCLUSION
This study proposed a novel PRE method that retains the
amplitude information of nonlinear time series. The new
entropy method can more accurately reflect whole informa-
tion within time series than the classical PE, MPE_S4 and
MPE_S8, especially in low SNR environments. PRE can
accurately differentiate nonlinear chaotic levels with the
logistic mapping sequence, and it can also correctly identify
various logistic series plus noise. Lastly, the results using real
EEG recordings from the Bonn database and the CHB-MIT
EEG database confirmed that PRE’s performance is superior
to that of PE, MPE_S4 and MPE_S8.

Actually an in-depth discussion helps to explain the PRE
results of the intracranial EEG data and the scalp EEG data.
Therefore, our future work will mainly focus on finding a
scientific and rational explanation in more extended ways.
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