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1. Introduction

Sleep is a complex amalgam of physiologic processes and it can reflect the quality of the physical and mental 
condition. With the increasing pressures of modern life, sleep apnea, insomnia and narcolepsy are gradually 
raising people’s concerns and efficiently identifying sleep stages greatly helps analyze and monitor sleep quality. 
Polysomnograms (PSGs) (Zhang and Wu 2017) are generally utilized to diagnose sleep disorders by experts, 
and sleep stage classification is traditionally performed based on visual interpretation of PSGs according 
to Rechtschaffen’s and Kales’s (R&K) recommendations (Rechtschaffen and Kales 1968) or a new guideline 
developed by the American Academy of Sleep Medicine (AASM) (Iber 2007). In this study, R&K is applied as the 
standard for the six sleep stages, including wake (W), non-rapid eye movement (NREM) 1 (S1), NREM 2 (S2), 
NREM 3 (S3), NREM 4 (S4) and rapid eye movement (REM).
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Abstract
Objective: Sleep quality helps to reflect on the physical and mental condition, and efficient sleep stage 
scoring promises considerable advantages to health care. The aim of this study is to propose a simple 
and efficient sleep classification method based on entropy features and a support vector machine 
classifier, named SC-En&SVM. Approach: Entropy features, including fuzzy measure entropy 
(FuzzMEn), fuzzy entropy, and sample entropy are applied for the analysis and classification of sleep 
stages. FuzzyMEn has been used for heart rate variability analysis since it was proposed, while this 
is the first time it has been used for sleep scoring. The three features are extracted from 6 376 730 s 
epochs from Fpz-Cz electroencephalogram (EEG), Pz-Oz EEG and horizontal electrooculogram 
(EOG) signals in the sleep-EDF database. The independent samples t-test shows that the entropy 
values have significant differences among six sleep stages. The multi-class support vector machine 
(SVM) with a one-against-all class approach is utilized in this specific application for the first 
time. We perform 10-fold cross-validation as well as leave-one-subject-out cross-validation for 61 
subjects to test the effectiveness and reliability of SC-En&SVM. Main results: The 10-fold cross-
validation shows an effective performance with high stability of SC-En&SVM. The average accuracy 
and standard deviation for 2–6 states are 97.02  ±  0.58, 92.74  ±  1.32, 89.08  ±  0.90, 86.02  ±  1.06 
and 83.94  ±  1.61, respectively. While for a more practical evaluation, the independent scheme is 
further performed, and the results show that our method achieved similar or slightly better average 
accuracies for 2–6 states of 94.15%, 85.06%, 80.96%, 78.68% and 75.98% compared with state-
of-the-art methods. The corresponding kappa coefficients (0.81, 0.74, 0.72, 0.71, 0.67) guarantee 
substantial agreement of the classification. Significance: We propose a novel sleep stage scoring 
method, SC-En&SVM, with easily accessible features and a simple classification algorithm, without 
reducing the classification performance compared with other approaches.
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The manual scoring by experts is always time consuming and error prone. Thus, an efficient auto-
matic classification method is of great necessity since sleep wearable devices have developed greatly in 
recent years (Bianchi 2017). Different methods have been proposed for sleep stage classification (Oral 
et al 2017, Qureshi and Vanichayobon 2017, Karimzadeh et al 2018). Most of these methods are based on 
time or frequency domain features from EEG, EOG and electromyogram (EMG) signals. Spectral and 
non-linear candidate features were extracted from EEG and EMG signals, and Chapotot et al proposed a 
novel classification framework by selecting robust candidate features, emulating artificial neural network  
classifiers, and assigning sleep–wake stages based on flexible decision rules (Chapotot and Becq 2010). Krakovská 
and Mezeiová achieved a classification accuracy of 74% for 5-state classification using features extracted from 
different frequency bands of EEG, the power of EMG and variances of EOG (Krakovská and Mezeiová 2011). 
Goldberger et al combined entropy and spectral edge frequency features from a single EEG channel, and they 
were able to reach with an accuracy of 93.8% for five sleep stages by a multi-class SVM (Goldberger et al 2000), 
with a sensitivity of 49.1% for the S1 stage (Nakamura et al 2017). Charbonnier et al proposed an automatic 
sleep–wake stages classifier that dealt with the presence of artifacts and they claimed 85.5% of overall accuracy 
with an improved ability to distinguish the S1 stage from REM (Charbonnier et al 2011). Aboalayon et al pro-
posed a new framework that can be implemented in an embedded hardware device for sleep scoring based on 
statistical features applied to single-channel EEG signals, and, using a decision tree as a classifier, they claimed 
an average classification sensitivity, specificity and accuracy of 89.06%, 98.61% and 93.13%, respectively (Aboa-
layon et al 2014). Zhu et al applied different visibility graphs (VGs) to study sleep EEG signals. They identified 
significant differences in mean degrees between different VGs and horizontal VGs associated with single-channel 
EEG signals and the accuracy and kappa coefficients of the 6-state classification were 87.5% and 0.81, respectively 
(Zhu et al 2014).

This paper proposes a novel sleep stage classification method based on entropy features and an SVM classi-
fier, called SC-En&SVM, by employing fuzzy entropy (FuzzyEn), fuzzy measure entropy (FuzzyMEn) and sam-
ple entropy (SampEn) from EEG and EOG signals and performing classification by multi-class SVM using a 
one-against-all class approach. A statistical independent samples t-test shows that the applied entropy features of 
each sleep stage have significant differences. The 2–6 states sleep stage classifications are given based on the leave-
one-subject-out cross-validation for 61 individual subjects and 10-fold cross-validation for non-independent 
training and testing. The overall average accuracy and the corresponding Cohen’s kappa coefficient and per-class 
classification performance metrics are used to evaluate our method. The results show that SC-En&SVM has a 
similar or slightly better performance than the existing sleep scoring methods.

The remaining sections of this paper are organized as follows: the introduction of the experimental data is 
given in section 2 and the methodology is briefly presented in section 3. In section 4, the detailed experiments 
and results are presented for the leave-one-subject-out cross-validation and 10-fold cross-validation of the non-
independent training and testing set. A discussion is given in section 5 by comparing the SC-En&SVM with state-
of-the-art published methods and we also discuss the limitations of the SC-En&SVM. Finally, the conclusions 
are presented in section 6.

2. Experimental data

The experimental data used in this paper are obtained from the sleep-EDF database (Goldberger et al 2000), 
which contains 61 recordings from two studies: (1) the SC* files (SC  =  sleep cassette) were obtained in a 1987–
1991 study of age effects on sleep for healthy Caucasians aged 25–101 without any sleep-related medication; (2) 
the ST* files (ST  =  sleep telemetry) were obtained in a 1994 study of temazepam effects on sleep for Caucasian 
males and females with mild difficulty falling asleep. For the SC* files, PSGs of about 20 h are recorded during two 
subsequent day–night periods at the subjects’ homes, while the PSGs of about 9 h, for the ST* files, are recorded in 
hospital over two nights, one of which is after temazepam intake (Mourtazaev 1995, Kemp et al 2000). However, it 
is worth noting that the ST* recordings included in this paper were recorded during the night with no temazepam 
intake. Each SC* recording contains seven signals while each ST* recording contains five signals. The detailed 
information from the database is presented in table 1.

In this study, Fpz-Cz EEG, Pz-Oz EEG and horizontal EOG signals are selected to analyze and identify the 
sleep stages; these three channels are sampled at 100 Hz, providing detailed information for each sleep stage 
(Liang et al 2012, Ronzhina et al 2012). These stages are characterized by their spectral contents, patterns and 
duration. The wake stage is characterized by alpha or faster frequency rhythms, along with frequent eye move-
ments and high EMG amplitudes. S1 corresponds to the intervals at which the alpha frequency (8–13 Hz) occu-
pies less than 50% of the epochs and vertex waves are evident. S2 refers to an epoch in which sleep spindles and 
K-complexes exist. Stage 3 is scored when there are low-frequency waves with a frequency less than 2 Hz; sleep 
spindles and K-complexes may also occur. The deepest sleep stage, S4, is characterized by the existence of delta 
(<4 Hz) waves in more than 50% of the epochs. Finally, the REM stage is characterized by saw-tooth waves,  
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saccadic eye movements and very low EMG amplitudes, and it is similar to the wake stage, but REM has lower 
ampl itude alpha activity (Karimzadeh et al 2018). Figure 1 illustrates an example of 30 s epoch Fpz-Cz EEG and 
EOG signals of six sleep stages from sc4002e0. Additionally, the 39 SC* recordings are recorded in high quality 
without any failed leads. In contrast, the small number of failed signals in the ST* series are firstly detected and 
discarded before further processing.

All recordings are stored in EDF format, each PSG is scored by well-trained technicians based on the R&K 
manual (Rechtschaffen and Kales 1968) and the hypnograms consist of the sleep stages W, REM, S1, S2, S3, S4, 
M (movement time) and ‘?’ (not scored). As the M and ‘?’ segments (mostly at the start and end of each record-
ing) do not belong to the five sleep stages, we filter and remove these two stages (90 epochs overall for 61 subjects) 
before further processing (Iber 2007). Also, there are long periods of wake stages at the start and the end of each 
recording for the SC* recordings; thus, to balance the original data, we only include 30 min of such periods just 
before and after the sleep periods. Afterwards, a 4th-order Butterworth filter with a passband from 0.5 to 30 Hz is 
applied to remove the linear trends and baseline drift (Boostani et al 2017). Because the hypnogram is generated 
by the experts every 30 s, the data is divided into epochs every 30 s, and each epoch contains 3000 data points. We 
evaluate our proposed method using the Fpz-Cz, Pz-Oz and EOG channels without any further preprocessing, 
and a total of 6 376 730 s epochs are selected in this paper. Table 2 summarizes the number of epochs and its corre-

sponding percentage for each stage for 61 subjects overall.

3. Methodology

Entropy is an information measure which determines the uniformity of proportion distribution (Inouye et al 
1991). For a time series, the greater the probability of generating new patterns means the greater its irregularity, 
and entropy is widely used to evaluate the degree of randomness (or inversely, the degree of orderliness) of a 
time series (Costa et al 2005). In other words, entropy can measure the irregularity of a signal, and the higher the 
irregularity of a signal the greater its corresponding entropy will be. For example, the entropy of the EEG or EOG 
signal (Hassan and Subasi 2017) recorded when the subject is awake would be greater than that recorded when 
the subject is asleep because the brain and the eyeball are active and excited during the waking period. When the 
sleep turns into non-REM, the brain becomes inactive and its response to the external stimuli decreases as the 
sleep turns deeper, and accordingly, the entropy of the EEG and EOG signals would decrease correspondingly. 
Therefore, the idea of applying entropy as features for classification is theoretically possible, and several papers 
have reported their research on sleep based on entropy features (Popovic et al 2014, Rodríguezsotelo et al 2014, 
Chen et al 2015, Lajnef et al 2015).

3.1. Entropy features
Considering an EEG or EOG sequence x = {x(i) : 1 � i � N} of length N (30 s, 3000 points), the fuzzy entropy, 
fuzzy measure entropy and sample entropy are calculated in this study.

Table 1. Detailed information from the database used in this study.

Series Recordings No. of PSGs Recording duration Channels

Sampling 

frequency

SC* recordings

SC4ssnE0 

00  ⩽  ss#1  ⩽  19 

n#2  =  1 or 2  

(with some lost)

39

Day–night (containing a large  

number of pre-sleep and  

post-sleep wake epochs)

Fpz-Cz EEG

100 HzPz-Oz EEG

Horizontal EOG

EMG

1 Hz
Body temperature

Respiration

Event maker

ST* recordings

ST7ssnJ0 

01  ⩽  ss#1  ⩽  24 n#2  =  1 

or 2 (with some lost) 22
Overnight (most epochs are  

of sleep stages)

Fpz-Cz EEG

Pz-Oz EEG  

Horizontal EOG  

Submental EMG

100 Hz

Event maker 1 Hz

Note: #1 denotes the subject number. #2 denotes the night number. Both the SC* and ST* files are recorded for two separate nights. For 

example, SC4001E0 is the PSG of 00 subject recorded on the first night, while SC4012E0 is for 01 subject on the second night.
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3.1.1. Fuzzy entropy
Fuzzy entropy (FuzzyEn) is the entropy of a fuzzy set, representing the information of uncertainty for a series 
(Al-Sharhan et al 2001). Due to the fact that FuzzyEn contains vague and ambiguous un-certainties, it is quite 
different from the classical Shannon entropy because no probabilistic concept is needed to define it, while the 
Shannon entropy contains the randomness uncertainty (probabilistic) (Al-Sharhan et al 2001). The FuzzyEn is 
defined using the concept of membership degree and its calculation procedure is explained in Chen et al (2007). 
The FuzzyEn statistic, the given input value for embedding dimension m, fuzzy power n, and tolerance threshold 
r, is defined as

FuzzyEn(m, n, r, N) = lnφm(n, r)− lnφm+1(n, r) (1)

where

φm(n, r) =
1

N − m

N−m∑
i=1

Ñ
1

N − m − 1

N−m∑
j=1,j �=i

(exp(−(dm
ij )

n
/r ))

é
 (2)

in which dm
ij = d[Xm

i , Xm
j ] = max

k∈(0,m−1)
{|x(i + k)− x0(i)− (x( j + k)− x0( j))|}, indicating the maximum 

distance between two local sequence segments Xm
i  and Xm

j , Xm
i = {x(i), x(i + 1), . . . , x(i + m − 1)} − x0(i), 

1 � i, j � N − m. While x0(i) indicates the mean value of the sequence {x(i), x(i + 1), . . . , x(i + m − 1)}.

3.1.2. Fuzzy measure entropy
Fuzzy measure entropy (FuzzyMEn) has been used for heart rate variability analysis in (Liu et al 2013), while this 
is the first time it has been used from EEG and EOG for sleep stage classification. This represents an evolution of 
FuzzyEn and is devised to integrate both local and global characteristics and could reflect the entire irregularity of 
a time series. FuzzyMEn is calculated based on the fuzzy set theory and constructed with the membership degree 
of a fuzzy function instead of using the ‘0–1’ judgment of the Heaviside function that is typically used in the 
approximate entropy and sample entropy; it can improve the poor statistical stability in the approximate entropy 
and sample entropy. The algorithm of FuzzyMEn is inspired by the study of Chen et al (2007), in which the fuzzy 
sets are introduced to improve the statistical stability. The detailed description of the calculating procedure is 
given by Liu et al (2013). Similarly to FuzzyEn, FuzzyMEn is defined as

Figure 1. An example of 30 s epoch Fpz-Cz EEG and EOG signals of various sleep stages from sc4002e0.

Table 2. The number of epochs for each stage for 61 subjects.

Stages W S1 S2 S3 S4 REM Total

Number of epochs 10 931 (17.14%) 4848 (7.60%) 27 292 (42.80%) 5075 (7.96%) 3773 (5.92%) 11 848 (18.58%) 63 767

Physiol. Meas. 39 (2018) 115005 (13pp)
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FuzzyMEn(m, n, r, N) = FuzzyLMEn(m, n, r, N) + FuzzyFMEn(m, n, r, N) (3)

in which FuzzyLMEn(m, n, r, N) = FuzzyEn(m, n, r, N) indicates the local fuzzy measure entropy while 
FuzzyFMEn(m, n, r, N) represents the global fuzzy measure entropy. FuzzyFMEn is computed in a similar 
fashion to FuzzyLMEn:

FuzzyFMEn(m, n, r, N) = lnφm
F (n, r)− lnφm+1

F (n, r) (4)

where

φm
F (n, r) =

1

N − m

N−m∑
i=1

Ñ
1

N − m − 1

N−m∑
j=1,j �=i

(exp(−(dFm
ij )

n
/r ))

é
 (5)

in which dFm
ij = d[XFm

i , XFm
j ], indicating the maximum distance between two global sequence segments XFm

i  
and XFm

j , XFm
i = {x(i), x(i + 1), . . . , x(i + m − 1)} − x̄, 1 � i, j � N − m, in which x̄ is the mean value of the 

entire sequence x = {x(i) : 1 � i � N}.

3.1.3. Sample entropy
The reader is referred to Ge et al (2007) for the computing procedure. For the N length sequence x, given the 
parameters m and r, the sample entropy (SampEn) can be calculated as follows.

Considering the N − m + 1 sequence segments Xm(i) = {x(i), x(i + 1), . . . , x(i + m − 1)} for 
{ i| 1 � i � N − m + 1}, Bi counts the number of pairs with distances smaller than r between Xm(i) and Xm( j), 
where i �= j; and similarly Ai  is the number of pairs with distances smaller than r between Xm+1(i) and Xm+1( j), 
where i �= j.

Then, the probability that the distance between Xm(i) and Xm( j) is smaller than r is given by 

Bm
i (r) = Bi/N − m − 1 , and the density is Bm(r) = 1

N−m

∑N−m
i=1 Bm

i (r). Similarly, Am
i (r) and Am(r) can 

also be calculated in the same fashion. Then, the number of templates that matches in an m-dimensional (or 
(m  +  1)-dimensional) phase space within the tolerance r can be calculated as

B(r) = 1/2 (N − m − 1)(N − m)Bm(r) (6)

A(r) = 1/2 (N − m − 1)(N − m)Am(r). (7)

Finally, SampEn is defined as

SampEn(m, r, N) = − log

Å
A(r)

B(r)

ã
. (8)

Therefore, SampEn calculates the negative natural logarithm of the conditional probability that an EEG or EOG 
sequence x of length N, having repeated itself for m samples within the tolerancer r, will also repeat itself for 
m + 1 samples, with no self-matches (Richman and Moorman 2000).

3.2. One-against-all SVM
For classification, the multi-class SVM is applied in this paper for its simplicity and robustness, and it has been 
widely used in sleep stage classification by other researchers (Adnane et al 2012, Zhu et al 2012, 2014, Surantha 
et al 2017). We have tried several types of SVMs, and finally the multi-class SVM using the one-against-all 
class approach is employed for its simplicity and good performance. The main idea of the one-against-all class 
approach is simple. As it is designed for binary classification, we need to reconstruct the multi-class classifier, and 
the idea of the one-against-all class approach comes from the one-against-one class approach used by Nakamura 
et al (2017). For a multi-class classification task, we reconstruct the multi-class classifier by connecting several 
binary classifiers in series, and each binary classifier only solves the classification of one class against all the others, 
and the next binary classifier does the same thing, ignoring the classified class by the previous classifier.

In this paper, the Gaussian radial basis function (RBF) (Chriskos et al 2017) is selected as the kernel function, 
as it is shown to perform better than linear or polynomial kernels (Bsoul et al 2011) in the context of sleep classi-
fication. In the SVM training phase, tuning of the parameters is necessary for a better classification performance, 
including choosing the box constraint (C) and γ . Specifically, C is a tradeoff parameter between regularization 
and accuracy, which influences the behavior of the support vector selection, and γ  is an important factor to con-
trol the RBF kernel in transmitting data to a new hyperspace. Optimization of the hyperparameters is investigated 
by following a 10-fold cross-validation that divides the training set into ten subgroups and iteratively minimizes 
the error using nine training groups and testing against the remaining subgroup. We implement a grid-search 
by scanning over the range [0.10:0.01:10] for both parameters, and the best C and γ  are found at 2.97 and 0.74, 
respectively. These two selected hyperparameters are then used for the leave-one-subject-out cross-validation.

Physiol. Meas. 39 (2018) 115005 (13pp)
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3.3. Performance evaluation
We evaluated the performance of the proposed method using overall accuracy (ACC), Cohen’s kappa coefficient 
(κ), per-class precision (PR), and per-class recall (RE). With chance agreement removed, κ determines the 
agreement between scorers. The κ values between 0.00–0.20, 0.21–0.40, 0.41–0.60, 0.61–0.80 and 0.81–1.00 
correspond to slight, fair, moderate, substantial and almost perfect agreement, respectively. The per-class metrics 
are computed by considering a single class as a positive class and all other classes combined as a negative one. The 
ACC, PR, RE and κ are calculated as follows:

ACC =
TP + TN

TP + FP + TN + FN
, PR =

TP

TP + FP
, RE =

TP

TP + FN
,κ =

Po − Pe

1 − Pe
,

where TP is the number of positive class epochs classified correctly, TN  is the number of negative class epochs 
identified correctly, FP  is the number of negative class epochs classified incorrectly as a positive class, FN  is the 
number of positive class epochs identified incorrectly as a negative class, Po is the observed agreement ratio and 
Pe  is the chance agreement probability (Sors et al 2018). Since we are dealing with a multi-class classification 

problem in this study, we calculate the class-specific PR and class-specific RE, as shown in tables 4 and 6.

4. Experiments and results

To evaluate the classification performance of the proposed method SC-En&SVM, a set of experiments are 
conducted using MATLAB 2015a on a Dell computer with a 3.40 GHz Intel Core i7-2600 CPU and 16.0 GB 
RAM. This section consists of three main parts: entropy features and an independent samples t-test, independent 
training and testing, and non-independent training and testing. The experiments and results of each part will be 
given as follows.

4.1. Entropy features extraction
As discussed in section 2, the data is divided into epochs every 30 s, and there are 63 767 epochs in total for all 61 
subjects. Following the data preprocessing, FuzzyEn, FuzzyMEn and SampEn are calculated for each epoch of 
the three channels. For parameter selection, the embedding dimension m is chosen as the default value 2, and 
different choices of tolerance threshold r = r′ ∗ SD (SD is the standard deviation of each 30 s epoch) and fuzzy 
power n influence the standard deviation of the calculated entropy. It is worth noting that n and r are the gradient 

and width of the boundary of the fuzzy function µ(dm
ij , n, r), respectively. We test different r′ values from 0.05 to 

0.2 and different n values from 1 to 5, and for a comprehensive consideration of a steady standard deviation of 
the calculated entropy and a small computation, we set the tolerance threshold r = 0.15 ∗ SD and fuzzy power 
n = 2. In addition, the time lag tau is set to the default value 1. The parameter selection in this study refers to the 
suggestions in Azami et al (2017) and Richman and Moorman (2000).

The box plots of the three entropies is given in figure 2, from which it is clearly shown that the entropy values 
change as the sleep grows deeper and the entropy of the stage W is generally higher than all other sleep stages. The 
FuzzyEn and SampEn of the three channels show a similar trend in that the entropy values decrease slightly as 
the sleep grows deeper from wake to REM. However, the values of FuzzyMEn are relatively smaller and the REM 
stage is higher than the others for both EEG channels. In contrast, the FuzzyMEn of the EOG channel shows a 
different trend in that the value of the S2 stage is higher than other sleep stages while that of REM is the lowest.

4.2. Independent samples t-test
To test the differences in the entropy features, the independent samples t-test is performed between every possible 
stage-pair for three entropy values of the three channels. However, since we are performing 15 stage-pair tests in total, 
some tests may result in statistically significant differences just by chance. Thus, we compensate for this random effect 
by performing Bonferroni’s corrections, in which a new threshold of 0.0033 is given by dividing 0.05 by 15. Then, it 
would be more dependable to be considered as significant if the p-value is still lower than this new threshold.

The results are given in table 3, in which the p-value of most stage-pairs is 0.000 (p  <  0.0033), meaning sig-
nificant differences between the corresponding pairs. Meanwhile, it is worth noting that the p-value in bold with 
* annotated indicates the stage-pair that have no significant differences, including the FuzzyMEn of the EOG 
between W–S4; the FuzzyEn of Pz-Oz between S2–S3, S2–S4 and S3–S4; the FuzzyEn of Fpz-Cz between S1–S3; 
the SampEn of Fpz-Cz between S1–S2, S1–S3, S1–S4 and S3–S4; and the SampEn of Pz-Oz between S1–S3, S1–S4 
and S3–S4. The independent samples t-test has shown significant differences between most possible stage-pairs, 
which establishes the foundation for sleep stage scoring based on entropy features.

4.3. Non-independent training and testing
Non-independent training and testing sets are commonly used in sleep stage scoring, and like Zhu et al (2014) 
and Hassan (2015), we thus first give the performance of the SC-En&SVM for the non-independent scheme.

Physiol. Meas. 39 (2018) 115005 (13pp)
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The 10-fold cross-validation is performed for C = 2 − 6 with the non-independent training and testing set. 
In this study, ten experiments are performed for each C, and in each experiment a random 90% of the 63 767 
epochs are chosen as the training data and the remaining 10% epochs as the testing data. Table 4 presents the 
average RE, PR, ACC and κ of ten experiments for each C. It is noted that we only present the standard deviation 
of ACC and κ (±standard deviation) in the last two rows, ignoring those of RE and PR for a simple and clear 
table. It shows that the non-independent scheme results in a good performance; nevertheless, we believe that 
the independent scheme is more suitable for practical evaluation in clinical diagnosis. Thus, we test our method 
using these two schemes.

4.4. Independent training and testing
We further evaluate our method using the leave-one-subject-out cross-validation scheme for 61 subjects and 
the average evaluation criteria, i.e. ACC, PR, RE and κ, are presented to verify the reliability of the proposed SC-
En&SVM. Specifically, we perform 61 experiments in total for each classification (C, C = 2, 3, 4, 5, 6) so that 
each recording can be tested, and in each experiment, we select one individual subject as the testing subject and 
the remaining subjects constitute the training set.

Figure 2. Box plots of the entropy of three channels for different sleep stages. (A) Fuzzy entropy. (B) Fuzzy measure entropy. (C) 
Sample entropy.

Physiol. Meas. 39 (2018) 115005 (13pp)
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We combine the predicted sleep stages from all 61 subjects and compute the performance metrics compared 
with the annotated labels from experts for all recordings. Table 5 shows the confusion matrix obtained from 
the leave-one-subject-out cross-validation for the 5-state classification (C = 5). For simplicity, we only include 
the confusion matrix for C = 5, in which S3 and S4 are merged, because the 5-state classification is an issue of 
common concern with the comprehensive comparison. The numbers in bold indicate the number of epochs that 
are correctly classified, while the others represent the incorrectly classified epochs. The last two columns in each 

row indicate per-class performance metrics computed from the confusion matrix.
Table 6 gives the average accuracy and κ of 61 subjects for each C. Examples of the predicted sleep stages com-

pared with the expert annotation are given in figure 3 (SC*) and figure 4 (ST*), where the blue line corresponds 
to the expert annotation, the red line corresponds to the predicted sleep stages and the black line on the bottom 
indicates the misclassified epochs.

5. Discussion

5.1. Comparison with state-of-the-art sleep classification methods
Table 7 shows a comprehensive comparison of the classification accuracy with eight state-of-the-art methods. 
We classify these methods into two groups: non-independent and independent training and testing sets. As 
presented in section 4, the non-independent training and testing scheme is the method that randomly selects 
epochs from all subjects to construct the testing set, while the independent one only selects epochs from one 
individual subject to construct the testing set.

Table 3. The p-values of the independent samples t-test of the entropy features between all possible pairs.

Pairs

Fuzzy entropy Fuzzy measure entropy Sample entropy

Fpz-Cz Pz-Oz EOG Fpz-Cz Pz-Oz EOG Fpz-Cz Pz-Oz EOG

W–S1 .000 .000 .000 .000 .000 .000 .000 .000 .000

W–S2 .000 .000 .000 .000 .000 .000 .000 .000 .000

W–S3 .000 .000 .000 .000 .000 .000 .000 .000 .000

W–S4 .000 .000 .000 .000 .000 .948* .000 .000 .000

W–REM .000 .000 .000 .000 .000 .000 .000 .000 .000

S1–S2 .000 .000 .000 .000 .000 .000 .030* .000 .000

S1–S3 .017* .000 .000 .000 .000 .000 .027* .231* .000

S1–S4 .000 .000 .000 .000 .000 .000 .035* .360* .000

S1–REM .000 .000 .000 .000 .000 .000 .000 .000 .000

S2–S3 .000 .006* .000 .000 .000 .000 .000 .000 .000

S2–S4 .000 .028* .000 .000 .000 .000 .000 .000 .000

S2–REM .000 .000 .000 .000 .000 .000 .000 .000 .000

S3–S4 .000 .907* .000 .000 .000 .000 .811* .881* .000

S3–REM .000 .000 .000 .000 .000 .000 .000 .000 .000

S4–REM .000 .000 .000 .000 .000 .000 .000 .000 .000

Note: It is noted that there are large numbers of .000 (p  <  0.0033) in this table, which is actually expected, indicating the significant 

differences between the corresponding stage-pairs. Meanwhile, the cells in bold (p  >  0.0033) indicate the stage-pairs that have no 

significant differences.

Table 4. The average RE, PR, accuracy and κ of the 10-fold cross-validation.

C = 2  

RE(%)/PR(%)

C = 3  

RE(%)/PR(%)

C = 4  

RE(%)/PR(%)

C = 5  

RE(%)/PR(%)

C = 6  

RE(%)/PR(%)

W 95.31/86.88 96.75/89.84 95.71/89.63 96.63/87.52 95.74/87.52

S1

97.35/99.11
91.61/99.05

85.58/94.75
38.91/47.97 34.61/46.63

S2 89.67/88.84 90.14/88.91

S3
92.67/82.79 87.32/86.43

75.74/63.34

S4 78.45/92.05

REM 93.53/74.25 90.27/79.97 88.57/76.98 87.22/76.64

ACC 97.02  ±  0.58 92.74  ±  1.32 89.08  ±  0.90 86.02  ±  1.06 83.94  ±  1.61

κ 0.89  ±  0.02 0.85  ±  0.01 0.84  ±  0.01 0.80  ±  0.01 0.78  ±  0.02
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We should note that the comparison with other methods is very difficult for different EEG databases, differ-
ent numbers of EEG channels and different numbers of sleep epochs. Based on this consideration, we include 
in this review all studies that report using the same EEG database as in this study, and they all used 30 s as a sleep 
epoch, and different kinds of features and classifiers are applied for sleep stage scoring. It is noted that most of 
the studies only use eight or 20 recordings from the sleep-EDF database, while to the best of our knowledge, this 
study is the first attempt to classify 2–6 sleep stages of 30 s epochs using both EEG and EOG channels with Fuzzy-
MEn features, especially using all 61 recordings. Furthermore, we only give the comparison for C = 5, because 
most of the reviewed methods only report their results for the 5-state classification. We have 63 767 epochs in this 
study, much more than the referred studies, as shown in table 7. Thus, the results of this study are statistically reli-
able and clinically credible.

Compared with the methods in both groups, it can be seen that our method achieves a similar or slightly bet-
ter classification accuracy compared with the state-of-the-art methods. Furthermore, the κ coefficient shows 
substantial agreements (0.71) between the sleep experts and our method. Considering that we use three common 
and feasible statistical features and a simple but efficient classifier that can be easily implemented in hardware, the 
classification performance is quite satisfying and competitive.

5.2. Why the S1 stage is not well detected
S1 stage discrimination is always the most challenging for automatic sleep stage classification tasks, because S1 is 
a transition phase between the change from wakefulness to other sleep stages. In this study, the most misclassified 
pair of sleep stages is S1–W, more than 29% of the S1 stage epochs are misclassified as W, as table 5 shows. The 

Table 5. The confusion matrix for C = 5.

Expert annotation

W S1 S2 SWS REM RE(%)/PR(%)

Predicted classification W 10 244 1410 821 178 634 93.72/77.10

S1 52 1124 358 60 124 23.18/65.42

S2 279 997 22 532 1655 1533 82.56/83.40

SWS 69 85 1634 6904 172 78.03/77.89

REM 287 1232 1947 51 9365 79.04/72.40

Table 6. The average accuracy and κ for each C.

C = 2 C = 3 C = 4 C = 5 C = 6

Average accuracy for 61 individual subjects (%) 94.15  ±  0.95 85.06  ±  0.8 80.96  ±  1.12 78.68  ±  0.93 75.98  ±  1.05

Average kappa for 61 individual subjects 0.81  ±  0.01 0.74  ±  0.01 0.72  ±  0.02 0.71  ±  0.01 0.67  ±  0.02

Figure 3. The sleep stages classification for subject SC4001E0. From top to bottom: expert annotation, predicted sleep stages and 
epochs for which there is a mismatch between the expert annotation and predicted sleep stages.
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main reason for this problem, we think, is the similarity in the characteristic EEG frequency patterns between W 
and S1, as described in Iber (2007). Specifically, both stages are characterized by the low voltage mixed 2–7 Hz  
and alpha activity. Furthermore, S1–REM is another easily misclassified stage-pair, with 26% of the S1 stage 
epochs being misclassified as REM. The characteristic EEG frequency patterns of both stages are also similar. In 
addition, S2 is the next stage that S1 is easily confused with (about 21%). The classification between S1 and S2 

Figure 4. The sleep stages classification for subject ST7061J0. From top to bottom: expert annotation, predicted sleep stages and 
epochs for which there is a mismatch between the expert annotation and predicted sleep stages.

Table 7. Comparisons with other sleep stage scoring methods using the same dataset, sleep-EDF, across the overall accuracy and κ 
coefficient for C = 5.

Methods Extracted features Classifier Subjects & channels Accuracy κ

Non-independent training and testing

Zhu et al (2014) 14 963 epochs; difference  visibility 

graph (DVG) & horizontal 

 visibility graph (HVG)

SVM 8 recordings, & Pz-Oz 88.9% —

Hassan (2015) 15 188 epochs; four standard 

statistics features & five spectral 

features

Bootstrap aggregating 

(bagging)

8 recordings, & Pz-Oz 86.53% —

SC-En&SVM 63 767 epochs; FuzzyEn, Fuzzy-

MEn, SampEn

One-against-all SVM 61 recordings, & Fpz-

Cz, Pz-Oz, EOG

86.02% 0.80

Independent training and testing

Rodríguez-Sotelo et al 

(2014)

40 826 epochs; multiscale entropy Artificial neural network 

(ANN)

20 recordings, & Fpz-

Cz, Pz-Oz

69% 0.42

Rodríguez-Sotelo et al 

(2014)

40 826 epochs; approximation 

entropy

ANN 20 recordings, & Fpz-

Cz, Pz-Oz

74% 0.54

Sanders (2014) 9830 epochs; average spectral 

power, preferential frequency band 

& cross-frequency-coupling (CFC) 

method

Linear discriminant 

analysis (LDA)

10 recordings, & Fpz-Cz 75% —

Tsinalis et al (2016a) 37 022 epochs; wavelet transform 

(WT) coefficients

Stacked sparse  

auto-encoders neural 

network (NN)

20 recordings, & Fpz-Cz 78.9% —

Tsinalis et al (2016b) 37 022 epochs; raw EEG input Convolutional neural 

network (CNN)

20 recordings, & Fpz-Cz 74.8% 0.65

Supratak et al (2017) 41 950 epochs; time invariant 

features

Deep learning 20 recordings, & Pz-Oz 79.8% 0.72

SC-En&SVM 63 767 epochs; FuzzyEn, Fuzzy-

MEn, SampEn

One-against-all SVM 61 recordings, & Fpz-

Cz, Pz-Oz, EOG

78.68% 0.71

Physiol. Meas. 39 (2018) 115005 (13pp)
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depends on the transition patterns that partly rely on the detection of arousals, body movement and slow eye 
movements, which are very difficult to capture (Tsinalis et al 2016a). Moreover, another reason that S1 could 
not be well detected is that it has the lowest number of samples fed into the classifier resulting in a failure of the 
learning process to this stage. Also, the possibilities that experts assign wrong labels to S1 in clinical diagnosis may 
also contribute to this problem.

5.3. Main characteristics of entropy features
The FuzzyEn and SampEn, as figure 2 illustrates, show a similar variation trend for the three channels and six 
sleep stages, while the FuzzyMEn is smaller on the whole and holds relatively more significant differences among 
different stages. The three features all show the highest value for stage W and basically have the least value for S4. 
This is because W is the most active stage and it is characterized by the presence of continuous alpha waves, faster 
frequency rhythms, along with frequent eye movements, while S4 is the deepest sleep stage, characterized by the 
existence of delta waves in more than 50% of the epochs.

5.4. Performance analysis for leave-one-subject-out cross-validation
It can be seen from table 5 that the poorest performance is noted for stage S1, with RE less than 30%, while the 
RE for other stages is significantly better, with the range between 78.03% to 93.72%. Most of the S1 epochs are 
misclassified as W, REM and S2. In addition, the S2 stage is easily misclassified as SWS (slow wave sleep, including 
S3 and S4) and REM. At the same time, SWS and REM are also easily misclassified as S2. It can also be seen that 
the confusion matrix is basically symmetric via the diagonal line (except in the pairs of S1–W and S1–REM). This 
indicates that the misclassifications are less likely to be due to the problem of data imbalance.

5.5. Limitations and future work
Finally, we should also point out the limitations of the proposed method, which we will focus on improving in 
our future work. On one hand, as a supervised learning process, the robustness of our method still needs to be 
tested for other EEG databases, and especially applied to different electrode positions to understand the best 
channels for sleep classification. Moreover, we only tested healthy people in the current study; the classification 
performance for people with sleep disorders needs to be tested in the future. In addition, we will also further 
investigate the correlations between features and the performance may be improved by feature selection. Lastly, 
even though our classification performance is encouraging, the overall classification accuracy and per-class 
performance metrics still need improvement, especially when applied to clinical diagnosis.

6. Conclusions

A novel sleep stage classification method, SC-En&SVM, based on entropy features and the SVM classifier was 
proposed in this paper. We applied a novel entropy feature, i.e. FuzzyMEn, to study sleep EEG and EOG signals. 
Together with FuzzyEn and SampEn, we found that the entropy values showed significant differences between 
different sleep stages, and specifically, the entropy value for the W stage was obviously higher than the sleeping 
stages. What is more, the entropy features of each sleeping stage also showed evident differences between each 
other. As a consequence, the entropy features were extracted from two EEG channels and one EOG channel 
to perform 2–6 state classifications. The 61 subjects from the sleep-EDF database were applied and the signals 
were divided into epochs every 30 s. Afterwards, we designed the multi-class SVM using the one-against-all class 
approach to perform the classification. The leave-one-subject-out cross-validation for 61 individual subjects 
and 10-fold cross-validation for the non-independent training and testing set were performed, and the results 
showed a similar or slightly better classification performance compared with the eight state-of-the-art methods. 
The sleep scoring performance of the proposed SC-En&SVM proved encouraging and competitive, considering 
that we applied three common and feasible statistical features and a simple but efficient classifier that can be 
easily implemented in hardware.

In the future, we will aim to improve the classification performance of the S1 stage, as S1 stage discrimination 
has always been the most challenging for automatic sleep stage classification tasks. In the meantime, we also plan 
to improve the SC-En&SVM so that it can be applied to the single-channel EEG or EOG collected from wearable 
devices.
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