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Abstract: Entropy-based atrial fibrillation (AF) detectors have been applied for short-term
electrocardiogram (ECG) analysis. However, existing methods suffer from several limitations.
To enhance the performance of entropy-based AF detectors, we have developed a new entropy
measure, named EntropyAF, which includes the following improvements: (1) use of a ranged function
rather than the Chebyshev function to define vector distance, (2) use of a fuzzy function to determine
vector similarity, (3) replacement of the probability estimation with density estimation for entropy
calculation, (4) use of a flexible distance threshold parameter, and (5) use of adjusted entropy results
for the heart rate effect. EntropyAF was trained using the MIT-BIH Atrial Fibrillation (AF) database,
and tested on the clinical wearable long-term AF recordings. Three previous entropy-based AF
detectors were used for comparison: sample entropy (SampEn), fuzzy measure entropy (FuzzyMEn)
and coefficient of sample entropy (COSEn). For classifying AF and non-AF rhythms in the MIT-BIH
AF database, EntropyAF achieved the highest area under receiver operating characteristic curve
(AUC) values of 98.15% when using a 30-beat time window, which was higher than COSEn with
AUC of 91.86%. SampEn and FuzzyMEn resulted in much lower AUCs of 74.68% and 79.24%
respectively. For classifying AF and non-AF rhythms in the clinical wearable AF database, EntropyAF

also generated the largest values of Youden index (77.94%), sensitivity (92.77%), specificity (85.17%),
accuracy (87.10%), positive predictivity (68.09%) and negative predictivity (97.18%). COSEn had the
second-best accuracy of 78.63%, followed by an accuracy of 65.08% in FuzzyMEn and an accuracy of
59.91% in SampEn. The new proposed EntropyAF also generated highest classification accuracy when
using a 12-beat time window. In addition, the results from time cost analysis verified the efficiency of
the new EntropyAF. This study showed the better discrimination ability for identifying AF when using
EntropyAF method, indicating that it would be useful for the practical clinical wearable AF scanning.

Keywords: atrial fibrillation (AF); sample entropy (SampEn); fuzzy measure entropy (FuzzyMEn);
coefficient of sample entropy (COSEn); wearable ECG; RR time series; cardiac rhythm

PACS: 87.19.Hh; 87.19.ug; 87.19.uj; 87.85.Ng; 05.45.Tp

1. Introduction

Atrial fibrillation (AF) is a typical arrythmia, defined as a tachyarrhythmia characterized by
predominantly uncoordinated atrial activation with consequent deterioration of atrial mechanical
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function [1,2]. AF is associated with significant mortality and morbidity, resulting in that more than
12 million Europeans and North Americans suffer from AF [3,4]. Moreover, its prevalence increases
with age, from <0.5% at 40–50 years of age, to 5–15% for 80 year olds [5]. However, current diagnose
for AF is under-detected and under-diagnosed due to the asymptomatic characteristic of AF episode,
which can elude clinical detection [6]. Timely and accurate detection of AF for real-time monitoring
and feedback is therefore challenging [7,8].

Twelve-lead 24-h Holter is a common method in clinic for AF detection. This technique is
effective to diagnose patients suffering from persistent AF but may miss many cases of paroxysmal
AF [9]. Wearable and longer-term electrocardiogram (ECG) monitoring strategies, especially the
techniques with the characteristics of unobtrusive, convenient and inexpensive, would contribute
to prevention of AF-itself and AF-related complications, including stroke and heart failure [6,8].
Wearable and long-term ECG monitoring requires more robust AF detector. Traditionally, atrial activity
analysis-based [10] and ventricular response analysis-based methods are two common approaches
for AF analysis. Compared with the former, the latter is more suitable for wearable monitoring since
the detection of the absence of P waves in dynamic ECGs for atrial activity analysis is difficult and
even impossible [3]. In contrast, ventricular response analysis only use the RR interval information
derived from the most obvious amplitude feature of QRS complexes [11]. In the past decade, many
ventricular response analysis-based AF detectors have developed [8,11–14]. Park et al. proposed a
Poincare plot method using the inter-beat intervals and extracted three features form the Poincare plot
to classify AF and non-AF rhythms (sensitivity 91.4% and specificity 92.9%) [15]. Sarkar et al. proposed
a Lorenz plot method for continuous long-term AF monitoring for an implantable monitor device [16].
Tateno and Glass proposed a method using the information of coefficient of variation and density
histograms of RR and deltaRR intervals [17]. Linker filed a US patent describing the use of a median
absolute deviation (MAD) method for AF detection [18]. Garcia et al. used a novel method exploiting
the relative wavelet energy (RWE) and signal averaging technique to automatically detect AF episodes
of a wide variety in length [19]. Petrėnas et al. developed AF detector using the characteristics of RR
interval irregularity and noise level [20]. Researchers also developed various entropy methods, which
have been proven the potential in analyzing short time window of RR time series and generating a
timely feedback of AF diagnosis [12,13,21].

Entropy refers to the degree of regularity or irregularity of a time series and is estimated by
counting how many ‘template’ patterns repeat. AF is typically presented by the irregular RR time
series and the irregularity can be captured by the entropy. Richman et al. [22] developed sample
entropy (SampEn) in 2000, which has been the most widely used entropy methods for short-term
physiological signal analysis and it also has applications in AF detection. A benefit of SampEn is its
ability to use short runs or bursts of AF as a template for matching, hence avoiding issues relating to
short AF episode durations that are common with RR interval variability-based methods [8]. Previous
studies showed that SampEn provided a high degree of accuracy in distinguishing AF from sinus
rhythm, but encountered errors when atrial or ventricular ectopy were present [11,23]. Since SampEn
does not count self-matches and lowers the counts of vector matching, it can result in infinite or
indeterminate outputs and is especially problematic for short-term time series [23]. Lake and colleagues
developed a new entropy-based AF detector named coefficient of sample entropy (COSEn), with two
key improvements from SampEn: flexibility in choosing the distance threshold r, and adjusting for
heart rate by subtracting the negative natural log of the mean RR interval. COSEn reported an area
under curve (AUC) of 92.8% when testing on the MIT-BIH Atrial Fibrillation (MIT-BIH AF) database
and also achieved positive predictive values higher than 90% when used on the University of Virginia
Holter database [23]. Liu et al. previously found that weak statistical stability existed in SampEn due
to the rigid similarity rule of 0–1 determination [24], and thus developed a fuzzy measure entropy
(FuzzyMEn) by employing the fuzzy function to replace the 0–1 Heaviside function [25]. Then they
proposed a normalized fuzzy entropy-based AF detector (NFEn), that combines the advantages of
both COSEn and FuzzyMEn.
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No matter whether SampEn, or FuzzyMEn, or COSEn, even or NFEn, they all use Chebyshev
distance to quantify the similarity of two state vectors, i.e., only considering maximum difference
between two state vectors. However, Chebyshev distance has two limitations [26]. First, it is not
normalized as it has no upper limit and can lead to an unbounded range for the tolerance threshold r
in the probability estimation. Second, only considering the maximum difference between two state
vectors is blind to the range of their element-wise difference, i.e., the element differences except the
maximum one could not be quantified. Thus, Omidvarnia et al. modified the SampEn by re-defining
the distance function using ranged function to replace Chebyshev function and thus proposed a new
range entropy (RangeEn) [26]. RangeEn showed more robust to signal amplitude changes and more
sensitive to in-built self-similarity of time series than SampEn, suggesting it is a good candidate for
studying complex physiological time series.

In this study, we sought to combine the concepts of the ranged function for distance determination
and the normalized fuzzy entropy AF detector—NFEn, and to develop a new entropy-based AF
detection method. The new method involves the five improvements:

(1) uses a ranged function to define the vector distance as RangeEn did,
(2) uses a fuzzy function rather than the Heaviside function to determine vector state similarity,
(3) replaces probability estimation with density estimation for entropy calculation,
(4) utilizes a flexible distance threshold r, and
(5) adjusts for heart rate by subtracting the natural log value of the mean RR interval.

We evaluated the new method using both the online open-access MIT-BIH AF database and the
actual clinical wearable long-term ECG recordings from AF patients. The clinical ECG data were
collected using a wearable SmartVest-based ECG recording device, which offers a continuous, low-cost,
unobtrusive, and convenient solution for long-term ECG monitoring. The objective was 2-fold: (1) to
determine the performance of the new method for AF detection in a population of patients with known
AF (online open-access MIT-BIH AF database) and (2) to assess the AF detection accuracy among
actual clinical patients with AF.

2. Methods

2.1. Data

The AF data used in this study included both the online open-access database and the AF
recordings collected from clinic using a wearable device.

2.1.1. Online Open-Access Database

The MIT-BIH AF database was used and it included 25 long-term ECG recordings, with the
detailed QRS position and beat annotation files. The individual ECG recordings were each 10 h
in duration and were sampled at 250 Hz, giving a minimum time resolution of 4 ms for RR time
series [3,12]. For all recordings, the rhythm annotations were prepared manually for four types:
AF (atrial fibrillation), AFL (atrial flutter), J (AV junctional rhythm), and N (used to indicate all
other rhythms). The types of AF (42.6%) and N (54.2%) are the majority (see Table 1). RR episodes
corresponding to the four rhythm types (AF, AFL, J and N) were extracted. Then data pre-processing
was performed on the classified RR episodes. A 30-beat window length was used to segment the RR
episodes without overlap. Classification was firstly performed between AF and N rhythm types. Then,
the RR segments corresponding to the N, AFL and J types were merged as non-AF rhythms to enable
classification between AF and non-AF rhythm types. Table 1 shows the detailed database profile, as
well as the numbers of RR segments after the segmenting procedures.
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Table 1. MIT-BIH AF database profile separated by the different rhythm types. For each rhythm type,
the numbers and the corresponding percentages (%) were given.

Variable AF Rhythm
Non-AF Rhythm

N AFL J Total

# rhythm episodes 299 (48.0%) 292 (46.9%) 14 (2.2%) 18 (2.9%) 324 (52.0%)
Total time length (h) 93.5 (37.5%) 149.1 (59.8%) 1.4 (0.6%) 5.2 (2.1%) 155.7 (62.5%)

# RR intervals 521,415 (42.6%) 663,202 (54.2%) 11,710 (1.0%) 26,818 (2.2%) 701.730 (57.4%)
# RR intervals (≤2 s) 521,359 (42.6%) 662,971 (54.2) 11,710 (1.0%) 26,813 (2.2%) 701,494 (57.4%)

# RR segments 17,247 (42.6%) 21,968 (54.3%) 383 (0.9%) 886 (2.2%) 23,237 (57.4%)

2.1.2. Clinical Wearable AF Recordings

Ten AF patients were included in this study (six females and four males, aged from 31 to 64). All
of the patients were recruited from the First Affiliated Hospital of Nanjing Medical University, Jiangsu,
China, and they were diagnosed as AF through the ECG Holter test. The protocol of this study was
approved by the Ethics Committee of the First Affiliated Hospital of Nanjing Medical University. All
patients gave written informed consent. Long-term (24 h) ECG data during patients’ daily activities
were collected using our developed Wearable ECG SmartVest System with a sample rate of 500 Hz
and a 12-bit resolution [27]. Signal recording lasted from May 2018 to July 2018. The wearable ECG
SmartVest System can provide an Internet of Things (IoT)-driven 24/7 ECG monitoring for patients,
and it consists of four typical IoT components, i.e., sensing layer, network layer, cloud platform and
application layer. The limb Lead-II ECG was selected for the following analysis since this lead usually
has the maximum signal amplitude and can facilitate the QRS detection.

First, signal quality assessment was performed for the wearable ECGs as a preprocessing stage
to filter the noisy episodes, which can significantly influence the accurate QRS locations. Five signal
quality indices (SQIs) were used, including bSQI, tSQI, iSQI, pSQI and kSQI. Table 2 lists the SQIs
with the descriptions. The detailed definitions can refer to [27]. A 10-s ECG was determined as noisy
if two of the following criteria meet: (1) bSQI < 0.5, (2) tSQI = 0, (3) iSQI = 0, (4) pSQI < 0.8, (5) kSQI
< 3. For the 10 24-h ECG recordings, 31.6% were identified as noisy signals and were excluded the
following AF detection (see Table 3).

Table 2. Signal quality indices (SQIs) used in this study.

SQI Description

bSQI [28,29] Agreement level of two QRS detectors within a fixed time window (10-s).
tSQI [27] Morphology consistency of any two ECG beats within a fixed time window (10-s).
iSQI [27] Interval abnormal index for RR time series with a fixed time window (10-s).

pSQI [28,29] Power spectrum distribution—power ratio between 5–25 Hz and 5–50 Hz.
kSQI [28,29] The fourth moment (kurtosis) of the ECG signal distribution.

Table 3. Clinical wearable AF database profile separated by the AF and non-AF rhythm types. For each
rhythm type, the numbers and the corresponding percentages (%) were given.

Variable Noisy Signal AF Rhythm Non-AF Rhythm Total

Total time length (h) 71.8 (31.6%) 35.2 (15.5%) 120.3 (52.9%) 227.3 (100%)
# Valid RR intervals – 169,741 (25.5%) 495,539 (74.5%) 665,280 (100%)

# RR segments – 5587 (25.4%) 16,376 (74.6%) 21,963 (100%)

After the signal quality assessment, a lightweight QRS detector was performed on the ECG
episodes with good signal quality for locating QRS complexes [27]. Ectopic RR intervals were identified
and excluded using our previously developed combined method [30]. A 30-beat window length was
also used to segment the RR interval time series without overlap. Three clinical staffs visually inspected
each 30-beat RR segment as AF or non-AF rhythm, and this work was done independently with the
three staffs. If they did not give the same answer, the majority decision rule was performed. Table 3
shows the detailed clinical database profile.
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2.2. New Entropy-Based AF Detection Method

The conception of the new entropy-based AF detection method came from the following aspects.
First, entropy measures the conditional probability that two short vectors of length m that match
within a distance tolerance r will also match at the m + 1 st point. Thus, the determination for vector
similarity is a core step, and it relays on the measure of the distance between two vectors. Traditionally,
Chebyshev distance (i.e., the element maximum distance) is used but it lacks the upper boundary
limit. Herein, we normalized the distance between two vectors using ranged function as refer to
Omidvarnia et al.’s work [26]. Second, once we have the distances between the two vectors, we can
determine their similarity or dissimilarity using a determination rule function. Traditionally, Heaviside
function is used to classify vector similarity in a binary fashion. This rigid determination results in
weak statistical stability [25]. Here we use a fuzzy function to replace the Heaviside function to smooth
the decision boundary and to reduce the sensitivity of entropy outputs to small changes in r. Third,
the traditional SampEn method uses a probability-based estimation, which may generate bias for short
RR interval time series. Lake et al. suggested replacing probability estimate with density estimate for
entropy approximation and demonstrated the improved version of COSEn has better performance
than SampEn for AF detection [23]. Herein, we also employ a density-based estimation to generate
the AF entropy value. Fourth, setting an appropriate tolerate threshold r is important for entropy
method and herein we utilize a flexible threshold r, which uses a minimum average matching number
for vector similarity. Last but not least, since AF is usually accompanied by a quick heart rate, the
adjustment for heart rate is necessary for the AF entropy calculation. Herein, we adjust for heart
rate by subtracting the natural log value of the mean RR interval for entropy value calculation. We
summarize the calculation process for the new AF entropy method as follows.

For an RR time series x(i) (1 ≤ i ≤ N), firstly form the vector sequences Xm
i (1 ≤ i ≤ N −m):

Xm
i = {x(i), x(i + 1), · · · , x(i + m− 1)} (1)

where the vector Xm
i represents m consecutive x(i).

The distance between vector sequences Xm
i and Xm

j doesn’t use the maximum distance (Chebyshev
distance). We normalize and define the distance as:

dXm
i,j = d

[
Xm

i , Xm
j

]
=

max
0≤k≤m−1

|x(i + k)− x(j + k)| − min
0≤k≤m−1

|x(i + k)− x(j + k)|

max
0≤k≤m−1

|x(i + k)− x(j + k)|+ min
0≤k≤m−1

|x(i + k)− x(j + k)|+ ε
(2)

where ε is a small positive number to avoid the possible denominator of 0. Then we calculate the
similarity degree DXm

i,j(n, r) between the vectors Xm
i and Xm

j by a fuzzy function uX
(

dXm
i,j, n, r

)
defined as:

DXm
i,j(n, r) = uX

(
dXm

i,j, n, r
)

= exp

−
(

dXm
i,j

)n

r

 (3)

where n is the similarity weight and r is the flexible tolerance threshold. The determination for the
flexible threshold r is to vary r value from an initial value of 0.05 until a specified number of average
matches for vector similarity is attained.

Then we define the functions BXm(n, r) as:

BXm(n, r) =
1

N −m

N−m

∑
i = 1

(
1

N −m

N−m

∑
j = 1

DXm
i,j(n, r)) (4)

BXm(n, r) measures the mean similarity degrees for the vectors at dimension m. Similarly, we
define the functions of mean similarity degrees AXm+1(n, r) for dimension m + 1 as:
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AXm+1(n, r) =
1

N −m

N−m

∑
i = 1

(
1

N −m

N−m

∑
j = 1

DXm+1
i,j (n, r)

)
(5)

Then, we use a density-based estimation, rather than probability-based estimation, to generate a
quadratic fuzzy entropy using the volume of each matching region, i.e., (2r)m as:

EntropyAF = − ln

(
AXm+1(n, r)/(2r)m+1

BXm(n, r)/(2r)m

)
= − ln

(
AXm+1(n, r)

BXm(n, r)

)
+ ln(2r) (6)

We also subtract the natural log of mean RR interval as follows:

EntropyAF = − ln
(

AXm+1(n, r)
BXm(n, r)

)
+ ln(2r)− ln(RRmean) (7)

where RRmean is the mean of RR intervals in the current RR segment. RRmean is expressed in unit of s.
As shown in Equation (7), directly subtracting the item of ln(RRmean) is arbitrary. Last, we use a

weight to optimized the effect of mean RR interval on the final entropy output of EntropyAF as:

EntropyAF = − ln
(

AXm+1(n, r)
BXm(n, r)

)
+ ln(2r)− w× ln(RRmean) (8)

where w is a weight for optimization.

2.3. Evaluation Method

SampEn, FuzzyMEn and COSEn were taken as “comparable algorithms” in this study. EntropyAF,
as well as three comparable entropy measures, were calculated for each 30-beat RR segment. The four
entropy measures were compared between the AF and non-AF rhythm types for both MIT-BIH AF
database and clinical wearable AF database, as well as between the AF and N rhythm types for the
MIT-BIH AF database. Entropy values on one side of a threshold c were labelled as AF rhythm and
values on the other side of c were labelled as N or non-AF rhythm. Classifier accuracy was assessed
via the following performance metrics:

• Sensitivity: Se = TP/(TP + FN)

• Specificity: Sp = TN/(TN + FP)
• Accuracy: Acc = (TP + TN)/(TP + FP + FN + TN)

• Positive predictive value: PPV = TP/(TP + FP)
• Negative predictive value: NPV = TN/(TN + FN)

• Total error: Err = (FP + FN)/(TP + FP + FN + TN)

where TP, TN, FP and FN are the numbers of true positives, true negatives, false positives and false
negatives respectively.

The receiving operator curve (ROC) curve was used to evaluate the effectiveness of each entropy
measure in AF classification. The ROC curve is a plot of (Se) versus (1− Sp) for many possible values
of c, which varied from the minimum to the maximum of the entropy outputs, with a step of 1% of the
range. AUC was used to evaluate the performances of different entropy measures. The Youden index
(J), another metric for assessing ROC curves, was also calculated as:

J = max
c
{Se(c) + Sp(c)− 1} (9)

At the optimal cut-point c∗, J is maximized and the classifier equally weighs sensitivity and
specificity. In this study, c∗ values were determined from the MIT-BIH AF database, and used for
testing on the clinical wearable AF database. The afore-mentioned performance metrics of Se, Sp,
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Acc, PPV, NPV and Err were given at the point of c∗. Doctors are concerned about the index’s
effectiveness for accepting or excluding AF judgment with high probability. Thus, we also calculated
the performance metrics at the setting of cut-point c for Se > 99% and Sp > 99%, respectively.

In addition, we tested the classification performance of the four entropy measures when using a
lower time window, i.e., 12-beat time window. The time costs of the four entropy measures were also
tested, for 30-beat and 12-beat time window, respectively.

3. Results

3.1. Results on the MIT-BIH AF Database (30-Beat Time Window)

Figure 1 shows the distributions of the four entropy measures for AF, N, AFL and J rhythms in
the MIT-BIH AF database. It is clear that the departures of AF rhythm from the N rhythm are more
obvious in the new proposed EntropyAF than those in the other three entropy measures. Figure 2
illustrates ROC curves with AUC values for the four entropy measures for classifying AF and N
rhythm types on the MIT-BIH AF database. SampEn, FuzzyMEn, COSEn and the new proposed
EntropyAF generate the lowest to highest AUCs, in order, with the values of 73.83%, 79.05%, 92.49%
and 98.31% respectively. The larger AUC in EntropyAF was statistically significant compared with the
other three entropy measures (all p < 0.01). AUC results for classifying AF and non-AF rhythms show
a similar trend as seen in the classification of AF and N rhythms.
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x-axis is the mean RR interval for the analyzed 30-beat time window.
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RR segments.

Figure 3 illustrates the corresponding ROC curves with AUC values. For classifying AF and
non-AF rhythms, SampEn, FuzzyMEn, COSEn and EntropyAF also result in the lowest to highest AUCs,
in order, with the values of 74.68%, 79.24%, 91.86% and 98.15% respectively.
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COSEn and EntropyAF in the MIT-BIH AF database for classifying AF and non-AF rhythms using
30-beat RR segments.
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Again, the larger AUC in EntropyAF was statistically significant (all p < 0.01). Because the AFL and
J rhythm types are included in the non-AF rhythm, the AUC values for both COSEn and EntropyAF
slightly decreased. AUC values decreased by 0.63% for COSEn and by 0.16% for EntropyAF.

Table 4 summarizes the classifier performance metrics at the optimal cut-point c∗, where the
classifier equally weighs sensitivity and specificity. Compared with other entropy measures, EntropyAF
generally resulted in the largest values of J, Se, Sp, Acc, PPV and NPV, and the smallest values of Err.
Specifically, for classifying AF and N rhythm types, EntropyAF resulted in the highest Se of 97.45%,
Se of 92.71% and Acc of 94.80% respectively. Meanwhile, it also reported the highest PPV of 91.30%
and NPV of 97.89%. The Err is only 5.20% for EntropyAF. COSEn had the second-best performance on
the classification of AF and N rhythms, outputting an Acc of 89.73%. FuzzyMEn followed by an Acc
of 73.04% and SampEn gave the worst Acc of 67.56%. The optimal cut-point c∗ values for SampEn,
FuzzyMEn, COSEn and EntropyAF are 2.29, 0.98, −1.51 and 0.72 respectively. As for classifying AF and
non-AF rhythm types, similar results were found, at the setting of the optimal cut-point c∗ values of
2.05, 0.91, −1.58 and 0.76 respectively for the four entropy measures. EntropyAF generated the highest
Acc of 94.25%, followed by an Acc of 88.57% in COSEn, and then followed by an Acc of 72.67% in
FuzzyMEn and an Acc of 66.37% in SampEn.

Table 4. Results of the performance metrics at the setting of the optimal cut-point c∗ for the four
entropy measures in the MIT-BIH AF database.

Task Metric SampEn FuzzyMEn COSEn EntropyAF

AF vs. N rhythms

c∗ 2.29 0.98 −1.51 0.72
J(%) 34.53 47.71 80.12 90.17

Se(%) 65.64 80.65 92.83 97.45
Sp(%) 68.88 67.07 87.28 92.71
Acc(%) 67.56 73.04 89.73 94.80
PPV(%) 59.16 65.78 85.14 91.30
NPV(%) 74.49 81.53 93.94 97.89
Err(%) 32.44 26.96 10.28 5.20

AF vs. non-AF rhythms

c∗ 2.05 0.91 −1.58 0.76
J(%) 37.16 48.73 78.78 89.07

Se(%) 78.88 85.82 94.93 96.47
Sp(%) 58.28 62.91 83.85 92.59
Acc(%) 66.37 72.67 88.57 94.25
PPV(%) 55.03 63.20 81.35 90.63
NPV(%) 81.00 85.67 95.70 97.25
Err(%) 33.63 27.33 11.43 5.75

Table 5 summarizes the classifier performance metrics at the cut-point c for highly weighting the
sensitivity (Se > 99%). Compared with other three entropy measures, EntropyAF resulted in obviously
larger values of Sp of 87.91% and Acc of 92.85% for classifying AF and N rhythms, obviously larger
values of Sp of 86.01% and Acc of 91.60% for classifying AF and non-AF rhythms. Acc values for
COSEn were 79.69% and 77.99% respectively for the above two classification tasks. As for SampEn
and FuzzyMEn, Acc values were even lower than 60%.

Table 6 summarizes the classifier performance metrics at the cut-point c for highly weighting
the specificity (Sp > 99%). Compared with other three entropy measures, EntropyAF resulted in an
obviously larger value of Se of 53.82% for classifying AF and N rhythm types, an obviously larger
values of Se of 53.82% for classifying AF and non-AF rhythm types. Se values for SampEn, FuzzyMEn
and COSEn were only 0.91%, 1.22% and 1.90% for classifying AF and N rhythms, and were similarly
0.91%, 1.22% and 1.36% for classifying AF and non-AF rhythms. Acc values in EntropyAF were 20%
larger than those in other three entropy measures.



Entropy 2018, 20, 904 10 of 17

Table 5. Results of the performance metrics at the setting of the cut-point c for highly weighting the
sensitivity (Se > 99%) for the four entropy measures in the MIT-BIH AF database.

Task Metric SampEn FuzzyMEn COSEn EntropyAF

AF vs. N rhythms

c 1.04 0.29 −1.88 0.54
J(%) 15.71 24.42 63.64 87.05

Se(%) >99.0 >99.0 >99.0 >99.0
Sp(%) 16.64 25.34 64.14 87.91
Acc(%) 50.20 57.77 79.69 92.85
PPV(%) 44.94 51.03 68.54 86.55
NPV(%) 96.32 97.24 99.39 99.24
Err(%) 49.80 42.23 20.31 7.15

AF vs. non-AF rhythms

c 1.04 0.29 −1.88 0.54
J(%) 16.89 23.63 61.53 85.15

Se(%) >99.0 >99.0 >99.0 >99.0
Sp(%) 17.82 24.55 62.03 86.01
Acc(%) 49.75 56.30 77.99 91.60
PPV(%) 43.83 49.36 66.04 84.02
NPV(%) 96.74 97.30 99.41 99.26
Err(%) 50.25 43.70 22.01 8.40

Table 6. Results of the performance metrics at the setting of the cut-point c for highly weighting the
sensitivity (Sp > 99%) for the four entropy measures in the MIT-BIH AF database.

Task Metric SampEn FuzzyMEn COSEn EntropyAF

AF vs. N rhythms

c 3.53 1.79 0.35 1.09
J(%) 0.12 0.41 0.93 52.87

Se(%) 0.91 1.22 1.90 53.82
Sp(%) >99.0 >99.0 >99.0 >99.0
Acc(%) 59.19 56.10 56.31 79.16
PPV(%) 44.06 54.12 60.52 97.81
NPV(%) 59.31 56.12 56.25 73.20
Err(%) 40.81 43.90 43.69 20.84

AF vs. non-AF rhythms

c 3.53 1.79 0.43 1.09
J(%) 0.13 0.44 0.57 52.83

Se(%) 0.91 1.22 1.36 53.82
Sp(%) >99.0 >99.0 >99.0 >99.0
Acc(%) 60.59 57.47 57.53 79.76
PPV(%) 43.15 53.85 56.25 97.59
NPV(%) 60.74 57.51 57.54 74.28
Err(%) 39.41 42.53 42.47 20.24

3.2. Results on the Clinical Wearable AF Database (30-Beat Time Window)

Table 7 summarizes the classifier performance metrics for the clinical wearable AF database at
the three setting of three cut-point c values: optimal cut-point c∗ (equally weighs sensitivity and
specificity), cut-point c for highly weighting sensitivity (Se > 99%) and highly weighting specificity
(Sp > 99%). For equally weighing sensitivity and specificity, the optimal cut-point c∗ values of 2.05,
0.91, −1.58 and 0.76 for the four entropy measures obtained from the MIT-BIH AF database analysis
were used. EntropyAF resulted in the largest values of J (77.94%), Se (92.77%), Sp (85.17%), Acc (87.10%),
PPV (68.09%) and NPV (97.18%), and the smallest value of Err (12.90%). COSEn had the second-best
performance on the classification of AF and non-AF rhythms, outputting an Acc of 78.63%, followed
by an Acc of 65.08% for FuzzyMEn and an Acc of 59.91% for SampEn.

For highly weighting the sensitivity (Se > 99%), EntropyAF resulted in obviously larger values of
Sp of 73.14% and Acc of 79.73% than other three entropy measures. Acc values for COSEn was 68.54%,
and even as low as 40.18% for FuzzyMEn and 34.93% for SampEn. PPV values in this situation were
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low since many non-AF segments were falsely determined as AF segments due to the low entropy
thresholds. SampEn, FuzzyMEn, COSEn and EntropyAF reported PPV values as 27.99%, 29.72%,
44.66% and 55.72% respectively.

For highly weighting the specificity (Sp > 99%), EntropyAF also resulted in obviously larger
values of Se of 40.43% and Acc of 84.11% than the other three entropy measures. Se values for SampEn,
FuzzyMEn and COSEn were only 2.67%, 3.54% and 8.11%. PPV values showed a significant increase
trend for the four entropy measures, and were 48.06%, 55.00%, 73.78% and 93.35% in turn.

Table 7. Results of the performance metrics for the four entropy measures in the clinical wearable
AF database.

Metric SampEn FuzzyMEn COSEn EntropyAF

c∗ 2.05 0.91 −1.58 0.76
J(%) 33.54 42.32 64.50 77.94

Se(%) 80.74 83.53 89.62 92.77
Sp(%) 52.80 58.79 74.88 85.17
Acc(%) 59.91 65.08 78.63 87.10
PPV(%) 36.85 40.88 54.90 68.09
NPV(%) 88.93 91.28 95.48 97.18
Err(%) 40.09 34.92 21.37 12.90

c 1.04 0.29 −1.88 0.54
J(%) 12.11 19.13 57.17 72.19

Se(%) >99.0 >99.0 >99.0 >99.0
Sp(%) 13.06 20.10 58.14 73.14
Acc(%) 34.93 40.18 68.54 79.73
PPV(%) 27.99 29.72 44.66 55.72
NPV(%) 97.58 98.39 99.44 99.56
Err(%) 65.07 59.82 31.46 20.27

c 3.53 1.79 0.43 1.09
J(%) 1.68 2.55 7.12 39.45

Se(%) 2.67 3.54 8.11 40.43
Sp(%) >99.0 >99.0 >99.0 >99.0
Acc(%) 74.51 74.73 75.89 84.11
PPV(%) 48.06 55.00 73.78 93.35
NPV(%) 74.89 75.05 75.95 82.97
Err(%) 25.49 25.27 24.11 15.89

3.3. Results When Using a 12-Beat Time Window

Since the performances from classifying AF and N rhythms were similar with those from
classifying AF and non-AF rhythms, this section only reported the results for classifying AF and
non-AF rhythms when using a 12-beat time window. Figure 4 illustrates the ROC curves with AUC
values for the four entropy measures for classifying AF and non-AF rhythms on the MIT-BIH AF
database. Compared with the 30-beat time window, the four entropy measures, SampEn, FuzzyMEn,
COSEn and EntropyAF, reported the similar trend with increased classification accuracy, generating the
lowest to highest AUCs, in order, with the values of 54.73%, 64.30%, 91.12% and 94.46% respectively.
The larger AUC in EntropyAF was still statistically significant compared with the other three entropy
measures (all p < 0.01).

Table 8 summarizes the classifier performance metrics for classifying AF and non-AF rhythms
when using 12-beat time window. For the MIT-BIH AF database (43,307 AF vs. 58,311 non-AF
segments), EntropyAF generated the largest values of J, Se, Sp, Acc, PPV and NPV, and the smallest
values of Err, and reported the highest Acc of 89.01%, followed by an Acc of 88.35% in COSEn, and
then followed by an Acc of 59.62% in FuzzyMEn and an Acc of 44.25% in SampEn. For the clinical
wearable AF database (14,023 AF vs. 41,055 non-AF segments), EntropyAF still generated the highest
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Acc of 79.59%, followed by an Acc of 72.85% in COSEn, and then followed by an Acc of 53.31% in
FuzzyMEn and an Acc of 51.31% in SampEn.
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Figure 4. ROC curve plots with AUC values for the four entropy measures: SampEn, FuzzyMEn,
COSEn and EntropyAF in the MIT-BIH AF database for classifying AF and non-AF rhythms using
12-beat RR segments.

Table 8. Results of the performance metrics for the four entropy measures when using a 12-beat
time window.

Database Metric SampEn FuzzyMEn COSEn EntropyAF

c∗ 1.08 1.01 −1.32 0.04

MIT-BIH AF database

J(%) 15.38 23.08 78.74 78.80
Se(%) 83.80 74.54 96.24 94.17
Sp(%) 31.58 48.63 82.49 84.63
Acc(%) 44.25 59.62 88.35 89.01
PPV(%) 28.19 51.82 80.33 82.34
NPV(%) 85.89 71.97 96.73 94.17
Err(%) 55.75 40.38 11.65 11.26

Clinical wearable AF database

J(%) 15.05 19.79 53.18 63.00
Se(%) 70.18 73.32 84.20 85.38
Sp(%) 44.87 46.47 68.98 77.62
Acc(%) 51.31 53.31 72.85 79.59
PPV(%) 30.30 31.87 48.11 56.58
NPV(%) 81.50 83.61 92.74 93.96
Err(%) 48.69 46.69 27.15 20.41
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3.4. Results on the Time Cost

In this study, all of the tests were implemented in MATLAB 2018a (The MathWorks, Inc., Natick,
MA, USA) on a 1.80 GHz Intel TM i7-8550U CPU (equipped with 8.00 G RAM). Table 9 illustrates the
time costs for the four entropy measures, from analyzing two time windows (30-beat and 12-beat RR
segments) on the MIT-BIH AF database. The results were presented as the mean time cost per segment
in the unit of ms. All four entropy measures had high numerical efficiency (all <2 ms/segment).
When processing a 30-beat RR segment, SampEn had the least mean time cost of 0.24 ms, followed by
FuzzyMEn of 0.66 ms. Different from SampEn and FuzzyMEn, which had constant threshold r values,
COSEn and EntropyAF needed to optimize the flexible threshold r value. Thus, they both reported
larger time costs, and had 1.72 ms and 1.62 ms respectively. Compared with COSEn, since EntropyAF
used a normalized vector distance, the optimization process for threshold r was straightforward and
efficient, generating a relatively lower time cost. When processing a 12-beat RR segment, all four
entropy measures needed less time costs, reporting the mean time costs of 0.15 ms, 0.49 ms, 1.58 ms
and 1.47 ms respectively.

Table 9. Results of mean time cost for the four entropy measures when performing on 30-beat and
12-beat RR segments in the MIT-BIH AF database.

Time Window # Total Segments
Mean Time Cost (Unit: ms/Segment)

SampEn FuzzyMEn COSEn EntropyAF

30-beat 40,484 0.24 0.66 1.72 1.62
12-beat 101,618 0.15 0.49 1.58 1.47

4. Discussion

This study proposed a new entropy-based AF detection method (EntropyAF), which combined
several improvements from the ranged function for similarity determination, coefficient entropy
AF detection method and fuzzy set approach. As an application, the new proposed EntropyAF,
as well as three comparable methods (SampEn, FuzzyMEn and COSEn), have been applied to test
the discrimination ability between AF and non-AF rhythms. This study showed that, with the
new proposed EntropyAF method, the classification performances between AF and non-AF rhythms
were significantly enhanced compared with the three comparable entropy measures. The better
discrimination ability of EntropyAF was confirmed from the analysis of clinical wearable long-term AF
recordings. Thus, EntropyAF analysis holds potential in clinical AF scanning.

Unlike the previous SampEn, FuzzyMEn and COSEn, the unique aspect of the new EntropyAF
is that it used the normalized vector distance definition, enabling it is not sensitive to changes in
signal magnitude (gain) [26]. This is useful for studying the dynamics of short-term AF episodes,
to accurately and robustly measure the transient changes in RR interval variability. Meanwhile,
the EntropyAF measure is needless of any amplitude correction, which is important for analyzing
physiological signals since the physiological signals are usually affected by confounding amplitude
changes such as artifacts.

The discrimination ability of EntropyAF was quantified by the AUC values from ROC curve
analysis when performed on the online open-access MIT-BIH AF database, using two time windows
(30-beat and 12-beat RR segments). As shown in Figures 2–4, its classification performances were
consistently better than the comparable methods (with significant statistical differences, all p < 0.01),
no matter for classifying AF and N rhythms (AUC = 98.31%, 30-beat time window), or for classifying
AF and non-AF rhythms (AUC = 98.15%, 30-beat time window, AUC = 94.46%, 12-beat time window).
Recently, we have developed a normalized fuzzy entropy (NFEn) for AF detection, which combined
the concepts of density estimation, flexible distance threshold and heart rate adjustment, but didn’t
employ the concept of ranged function for defining the vector similarity. Results of NFEn on the
MIT-BIH AF database reported an AUC of 95.70% (30-beat time window) for AF and N rhythms
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discrimination, and AUCs of 95.27% (30-beat time window) and 92.72% (12-beat time window) for AF
and non-AF rhythms discrimination [12]. Thus, compared with NFEn, the new developed EntropyAF
in this study obtained an AUC increase of 2.61% (30-beat time window) for classifying AF and N
rhythms, and an AUC increases of 2.88% (30-beat time window) and 1.74% (12-beat time window) for
classifying AF and non-AF rhythms. Meanwhile, compared with COSEn, EntropyAF obtained a larger
AUC increase of 5.82% (98.31% vs. 92.49%) for classifying AF and N rhythms, and a large AUC increase
of 6.29% (98.15% vs. 91.86%) for classifying AF and non-AF rhythms (all using 30-beat time window).

The need for improved detection of silent AF is demonstrated by the fact that almost half of the
patients with an AF-related stroke, arrhythmia has been found to be asymptomatic and undiagnosed,
and therefore untreated [31,32]. Development of a quick, single measure for scanning the onset and
offset of AF episodes is a major challenge, which may significantly help on knowing the exact AF
duration and calculating the accurate AF burden [33,34]. From the ROC analysis on the MIT-BIH
AF database, we concluded the optimal cut-point c∗ values for SampEn, FuzzyMEn, COSEn and
EntropyAF, and used these cut-point values for AF and non-AF rhythms classification for the clinical
wearable AF recordings. The clinical long-term AF data confirmed the fine performance of the new
EntropyAF measure. When tested on 30-beat time window, EntropyAF generated a high Acc value of
87.10% for classifying AF and non-AF rhythms, while the Acc values were only 59.91%, 65.08% and
78.63% for SampEn, FuzzyMEn and COSEn respectively. Considering that the Acc value of 87.10%
was from the clinical wearable long-term ECG recordings that included lots of unexpected and various
signal noises, the use of the new EntropyAF on wearable ECG monitoring will promote a high patient
compliance and enhance the utility of the device for AF scanning and postoperative monitoring in
individual patients as well as in large population-based AF daily screening.

Furthermore, a varied decision-making threshold for the AF determination can be obtained from
the ROC analysis. This would allow the choice of clinically meaningful thresholds since the clinical
conditions may differ according to etiology and demographics, such as a cardiac surgery risk threshold
may be different than a general Intensive Care Unit (ICU) risk threshold [35]. Herein, we provided two
options for the entropy measures: highly weighting the sensitivity (Se > 99%) and highly weighting
the specificity (Sp > 99%), to facilitate the doctors’ judgement for surely accepting AF determination
or surely excluding the non-AF determination. The results verified that EntropyAF can high-accurately
detect the AF rhythm (Se > 99%), and efficiently identify the non-AF rhythm with a Sp of 73.14%.
In contrast, EntropyAF can also high-accurately exclude the non-AF rhythm (Sp > 99%) and pick off
about half AF rhythm segments.

The time cost test verified the calculation efficiency of the new EntropyAF method. All four entropy
measures had high numerical efficiency (less than 2 ms) for processing a 30-beat or 12 beat RR segment.
SampEn and FuzzyMEn had less time costs since they both used constant threshold r values. COSEn
and EntropyAF generated larger time costs since they both needed to optimize the flexible threshold
r. The interesting fact is that EntropyAF reported a little smaller mean time cost than COSEn for both
30-beat and 12-beat time windows. The reason should be that EntropyAF used a normalized vector
distance to reduce the complexity of the optimization process for threshold r.

The limitations should be summarized. First, the proposed entropy-based AF detection method
was a ventricular response analysis-based method, i.e., it only analyzed the irregularity of RR time
series within a fixed short time window (30-beat here). Analysis of atrial activity (P wave) can definitely
lead to improved performance. Babaeizadeh et al. reported that combining the analysis of RR interval
and P wave generated a Se of 93% and Sp of 98% for the MIT-BIH AF database [34], while we got
a comparable results of Se as 97.45% and Sp as 92.71%. Combining the P wave analysis will be our
near future work, although P wave detection is often difficult when various noises are present in
wearable environment. Second, the decrease of performance in the evaluation metrics for clinical
wearable ECG signal is mainly due to the false location of QRS complexes in noisy episode. Once
error in QRS detection happens, the rhythm will become irregular even if within the non-AF signal
episode. In this situation, the rhythm may erroneously be classified as AF. The reduction of the false



Entropy 2018, 20, 904 15 of 17

positives AF is mainly achieved by the improvement of robust QRS location method, which will
prevent misclassifying non-AF arrhythmias as AF. Last, we note that employing machine learning
methods that combine multiple metrics may improve AF classification performance compared to using
a single measure alone [36,37]. We leave these issues to future studies.

In summary, this study demonstrated that compared with the precious three entropy-based AF
detectors, the new EntropyAF has better discrimination ability for the AF and non-AF rhythms. In future
experiments, we expect that the newly proposed EntropyAF analysis will be useful in the practical
clinical wearable applications for AF scanning in daily monitoring since it is conceptually simple and
computationally efficient.
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