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1.  Introduction

1.1.  Atrial fibrillation and its prevalence
Atrial fibrillation (AF), defined as a ‘tachyarrhythmia characterized by predominantly uncoordinated atrial 
activation with consequent deterioration of atrial mechanical function’ by the American College of Cardiology, 
the American Heart Association and the European Society of Cardiology (Fuster et al 2001), is a disorder of the 
heart’s electrical conduction system that leads to a fast and irregular heart rhythm, and acts as the most common 
sustained heart rhythm disorder, occurring in 1%–2% of the general population (Camm et al 2010, Lip et al 
2016). AF is associated with significant mortality and morbidity because it increases the risk of death, stroke, 
hospitalization, heart failure and coronary artery disease, etc (Camm et al 2010, Colloca 2013). More than 12 
million Europeans and North Americans are estimated to suffer from AF, and its prevalence will likely triple in 
the next 30–50 years (Savelieva and Camm 2008, Mozaffarian et al 2015). More importantly, the incidence of AF 
is destined to increase with the aging population (Wang et al 2003). The prevalence of AF increases with age, from 
less than 0.5% at 40–50 years of age, to 5%–15% for 80 year olds (Heeringa et al 2006, Naccarelli et al 2009).
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Abstract
Objective: This study focuses on the comparison of single entropy measures for ventricular response  
analysis-based AF detection. Approach: To enhance the performance of entropy-based AF detectors, 
we developed a normalized fuzzy entropy, Hθ

N, a novel metric that (1) uses a fuzzy function to 
determine vector similarity, (2) replaces probability estimation with density estimation for entropy 
approximation, (3) utilizes a flexible distance threshold parameter, and (4) adjusts for heart rate by 
subtracting the natural log value of the mean RR interval. An AF detector based on Hθ

N was trained using 
the MIT-BIH atrial fibrillation (AF) database, and tested on the MIT-BIH normal sinus rhythm (NSR) 
and MIT-BIH arrhythmia databases. The Hθ

N-based AF detector was compared to AF detectors based 
on three other entropy measures: sample entropy (Hσ), fuzzy measure entropy (Hθ) and coefficient 
of sample entropy (Hc), over three standard window sizes. Main results: To classify AF and non-AF 
rhythms, Hθ

N achieved the highest area under receiver operating characteristic curve (AUC) values of 
92.72%, 95.27% and 96.76% for 12-, 30- and 60-beat window lengths respectively. This was higher 
than the performance of the next best technique, Hc , over all windows sizes, which provided respective 
AUCs of 91.12%, 91.86% and 90.55%. Hσ and Hθ resulted in lower AUCs (below 90%) over all window 
sizes. Hθ

N also provided superior performance for all other tested statistics, including the Youden 
index, sensitivity, specificity, accuracy, positive predictivity and negative predictivity. In conclusion, we 
show that Hθ

N can be used to accurately identify AF from RR interval time series. Furthermore, longer 
window lengths (up to one minute) increase the performance of all entropy-based AF detectors under 
evaluation except the Hc-based method. Significance: Our results demonstrate that the new developed 
normalized fuzzy entropy is an accurate measure for detecting AF.
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1.2.  Mechanism and clinical classification
The causes of AF are broadly cardiovascular and non-cardiovascular. The common cardiovascular risk factors 
for AF include hypertension, heart failure and ischaemic heart disease. The common non-cardiovascular risk 
factors for AF include sepsis, chest infection and obstructive sleep apnoea (Lip et al 2016). Although the precise 
pathobiological mechanisms of AF remain under investigation, they are thought to involve cardiac fibrosis 
and remodelling, which alter the way electrical impulses are propagated through the heart (Lip et al 2016). AF 
occurs because electrical signals are not systematically triggered via the sinoatrial node and follow an abnormal 
conduction pathway. The central feature of AF is very rapid and uncoordinated atrial activity at a rate up to 
300–600 beats per minute. The ventricle’s response depends on the atrial rate and on the filtering function of 
the atrioventricular (AV) node, which conducts only according to its refractory period. Irregular impulses to the 
ventricles cause a fast heart rate (up to 150 beats per minute) and less effective contractions, i.e. reduce cardiac 
output. AF is commonly classified into three types in clinical practice: paroxysmal if it self-terminates within 7 d, 
persistent if it lasts continuously for more than 7 d, and long-standing persistent if it is present continuously for 
more than 1 year, or as permanent (chronic) arrhythmia (Colloca 2013, Lip et al 2016).

1.3.  AF is currently under-detected
The prevalence of AF is wide. However, its detection is insufficient in clinical practice. AF is usually diagnosed 
based on clinical grounds, but symptoms, including palpitations, fatigue, dizziness, light-headedness and 
dyspnea, are non-specific and are frequently absent (Savelieva and Camm 2000), especially in elderly patients. 
AF is commonly asymptomatic and the first presentation with AF is often in association with a devastating 
AF-related complication, including a four- to five-fold increased risk of stroke (Wolf et al 1991) and a two- to 
three-fold increased risk of heart failure (Wang et al 2003). The absence of symptoms is not associated with a 
lower consequential risk of myocardial infarction, heart failure or stroke; AF is thus under-detected and under-
diagnosed (Lip et al 2016). AF diagnosis by symptoms leads to a large under-representation of the disturbance, 
since only one out of three patients may have been admitted to hospital (Hughes and Lip 2008).

In addition, according to data from the JAMA (Go et al 2001), 25%–62% of people with AF have paroxysmal 
AF. Meanwhile, more than 25% of people with paroxysmal AF will go on to develop persistent or permanent AF. 
However, paroxysmal AF is more difficult to recognize and detect than persistent or permanent AF (Gami et al 
2007) since paroxysmal AF is usually accidental and could last only for several seconds, and paroxysmal AF is 
even less symptomatic, and it was estimated that only 1 in 12 paroxysmal AF patients are symptomatic (Go et al 
2001). However, the type of AF—permanent or paroxysmal—does not statistically modify the risk of stroke 
occurrence (Go et al 2001, Gami et al 2007). Thus, detection for AF, especially for the short-term and less sympto-
matic paroxysmal AF, is still challenging in clinical applications. In the near future, increasing recognition of AF 
using ambulatory and mobile ECG might modify the global AF picture.

1.4.  Atrial activity analysis-based and ventricular response analysis-based AF detector
AF is associated with rapid uncoordinated atrial activations. On an electrocardiogram (ECG), AF is characterized 
by the replacement of P waves with rapid oscillated f waves that vary in size, shape, and timing (Fuster et al 2001, 
Abusaada et al 2004). The rapid uncoordinated atrial activations also induce an irregular ventricular rhythm 
in ECG signals. Thus, AF detectors are commonly classified into two types: atrial activity analysis-based and 
ventricular response analysis-based methods.

Atrial activity analysis-based AF detectors focus on detecting rapidly oscillated f waves. It is similar to the 
diagnosis process in clinics and thus it is a direct AF detection method. Many AF detectors based on atrial activ-
ity analysis have been proposed. These methods are mainly based on the analysis of the absence of P waves or the 
fibrillatory f waves present in the TQ interval. Typical methods include an echo state neural network (Petrnas 
et al 2012), a P-wave absence (PWA) based detector (Ladavich and Ghoraani 2015), using the average number of 
f waves as an AF feature (Du et al 2014), P-wave-based insertable cardiac monitor application (Prerfellner et al 
2014), wavelet sample entropy (Alcaraz et al 2006), wavelet entropy (Alcaraz and Rieta 2012, Rdenas et al 2015) 
and the relative wavelet energy method (Garca et al 2016).

Atrial activity analysis-based AF detectors can achieve high accuracy if the recorded ECG signals have a high 
signal quality, but it can be difficult when the ECG is distorted by noise, typical of ambulation, and can even be 
problematic in high fidelity monitoring (Colloca 2013). For atrial activity analysis, a stable, high quality ECG sig-
nal is required. However, a high quality ECG is difficult to obtain in real-time long-term recordings. In addition, 
even supposing high quality ECG is possible, sometimes a standard 12-lead ECG system may not be enough to 
study the atrial activity because the number of electrodes is too small and their location is not optimal to high-
light f-wave peaks (Colloca 2013). Meanwhile, rapidly oscillated f waves vary from patient to patient (Fuster et al 
2001, Abusaada et al 2004), resulting in the fact that no overall consensus exists when linking the amplitude of the 
f waves to the etiology of AF (Mainardi et al 2008).
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In contrast, ventricular response analysis is based on the predictability of the inter-beat timing (RR intervals) 
of the ventricular contractions in the ECG. RR intervals are derived from the most obvious large amplitude fea-
ture in the ECG: the R-peak. This approach is robust to artifacts, and can be used in situations where the ECG is 
noisy or unavailable (by using pulsatile signals), and thus is most suitable for automatic, real-time screening AF 
detection applications (Park et al 2009, Carrara et al 2015).

Many ventricular response analysis-based AF detectors have also been proposed, including Poincare plot 
analysis (Park et al 2009, Ruan et al 2011), Lorenz plot analysis (Sarkar et al 2008), cumulative distribution 
functions (Tateno and Glass 2001), median absolute deviation of RR intervals (Linker 2009), density histogram 
of delta RR intervals (Huang et al 2011), minimum of the corrected conditional entropy of the RR interval 
sequence (Cerutti et al 2008), an 8-beat sliding window RR interval irregularity detector (Petrnas et al 2015a), 
symbolic dynamics and Shannon entropy (Zhou et al 2014), sample entropy, Hσ (usually written SampEn) 
(Alcaraz et al 2010), coefficient of sample entropy, Hc , also referred to as COSEn (Lake and Moorman 2011, 
DeMazumder et al 2013).

It is worth noting that AF detectors with a combination of both atrial activity and ventricular response could 
enhance their performance. The combined AF detectors include RR interval Markov modeling combined with 
PR interval variability and a P-wave morphology similarity measure (Babaeizadeh et al 2009), achieving 92% 
sensitivity and 97% positive predictive value by adding atrial activity analysis, fuzzy logic classification using a 
combination of RR interval irregularity, PWA, f-wave presence, and noise level (Petrnas et al 2015b) resulting in a 
detection accuracy of 88% when using as few as five beats (compared with 82% only using the rhythm informa-
tion). It is also worth noting that multivariable approaches based on machine learning and signal quality assess-
ment that combine several of the above single features could also enhance the performance of AF detectors (more 
than 95% AF detection accuracy) (Colloca et al 2013, Oster and Clifford 2015).

1.5.  Entropy methods and their applications in AF detection
Recently, entropy-based methods have been introduced as a quantification of regularity in time series, initially 
motivated by applications to the relatively short time series (Pincus and Goldberger 1994, Richman and 
Moorman 2000). Entropy refers to the degree of regularity or irregularity of a time series and is estimated by 
counting how many ‘template’ patterns repeat. Repeated patterns imply increased regularity in the time series 
and lead to low entropy values (Pincus and Goldberger 1994, Richman and Moorman 2000, Costa et al 2005). 
Pincus and Goldberger (1994) developed approximate entropy (ApEn), and Richman and Moorman (2000) 
developed SampEn (Hσ) for short-term physiological signal analysis, defining entropy as the conditional 
probability that two short vectors of length m that match within a distance tolerance r will also match at the 
m  +  1st point. Because the calculation methods are relatively easy, these two methods have achieved wide 
applications in a variety of studies. Unlike ApEn, Hσ does not count self-matches (Richman and Moorman 
2000), which significantly reduces bias but also lowers the counts of vector matching. This can result in infinite 
or indeterminate outputs and is especially problematic for a short-term time series (Lake and Moorman 2011). 
We previously studied the phenomenon of ‘weak statistical stability’ in Hσ and found that this weak statistical 
stability is due to the rigid determination rule (0–1 determination; vectors are either similar or dissimilar) (Liu 
and Zhao 2011, Liu et al 2013). We therefore replaced the 0–1 determination with the fuzzy rule, proposing a 
fuzzy measure entropy method, Hθ, also referred to as FuzzyMEn, for a univariate time series (Liu and Zhao 
2011, Liu et al 2013) and a cross fuzzy measure entropy method (Hθ

X ) for a bivariate time series (Liu et al 2015). 
The calculation process for Hθ is similar to that of Hσ but employs a fuzzy function rather than a Heaviside 
function for vector similarity determination to reduce the sudden change of entropy values when threshold r 
changes slightly. Thus, the Hθ approach is more statistically stable than previous entropy measures (Liu et al 
2013, Zhao et al 2015). The SampEn-based developments also include its generalizations for multiscale analysis 
(Costa et al 2002, 2005) and multivariate multiscale analysis (Ahmed and Mandic 2011).

The entropy-based AF detectors also included two aspects, i.e. using the entropy method for atrial activity 
analysis and ventricular response analysis. For atrial activity analysis, entropy is usually used as the regularity 
measure of a P-wave episode in the TQ interval of an ECG signal to detect the appearance (or not) of the potential 
f waves. Analysis methods include using the wavelet sample entropy to directly measure the P-wave episode or 
using the wavelet entropy to measure the wavelet transform of the P-wave episode to detect AF (Alcaraz and Rieta 
2012, Rdenas et al 2015).

As mentioned above, an atrial activity analysis-based AF detector relies significantly on the ECG signal quality 
which is difficult for real-time and high fidelity monitoring applications. For robust ventricular response analy-
sis using the entropy method, Lake and colleagues reported that when using a coefficient of a sample entropy 
(Hc) statistic, adapted from Hσ, the performance of AF detection was significantly enhanced, even though only 
12-beat RR segments were used (Lake and Moorman 2011, DeMazumder et al 2013). The authors reported an 
area under curve (AUC) of 92.8% when testing Hc  on the MIT-BIH AF database. Improvements from Hσ to Hc  
were due to two key additions: the flexibility in choosing the distance threshold r, and adjusting for heart rate by 
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subtracting the negative natural log of the mean RR interval. Since AF events should usually last 30 s or longer in 
order to be considered clinically relevant (Heeringa et al 2006), the Hc  was also applied to 30 s RR segments in 
Carrara et al (2015). This entropy metric could achieve positive predictive values higher than 90% when used on 
the University of Virginia Holter database.

1.6.  Aim of this study
In this study, we propose a new entropy-based AF detector, normalized fuzzy entropy (Hθ

N), that combines the 
advantages of both Hθ and Hc  methods. We compare the robustness and accuracy of the AF detectors based on 
Hθ

N versus those based on three existing entropy metrics: Hσ, Hθ and Hc . In addition, recent studies report that 
an optimal window size of 41 beats was applied to the MIT-BIH AF database when using the multiple feature 
(ten)-based machine learning method for AF classification (Colloca et al 2013, Oster and Clifford 2015). Due to 
the wide variety of window lengths proposed as optimal time windows for entropy-based AF detectors, we also 
evaluate the performance of different entropies using three different window sizes: 12-beat, 30-beat and 60-beat 
RR segments.

We notice that the performance of the AF detector could benefit from the combination of atrial activity anal-
ysis or the machine learning-based multifeature fusion approach, especially after the PhysioNet/Computing in 
Cardiology Challenge 2017 entitled ‘AF classification from a short single lead ECG recording’ (Clifford et al 
2017). However, in the current study, we mainly focus on the comparison of single entropy measures for ven-
tricular response analysis-based AF detection, i.e. identifying an AF episode by performing the single entropy 
method on the short-term RR interval time series (within 1 min) to provide a simple and robust AF detection 
measure for automatic, real-time and ambulatory screening AF applications.

2.  Entropy methods

2.1.  Baseline algorithms
A sample entropy (Hσ), fuzzy measure entropy (Hθ) and coefficient of sample entropy (Hc) were taken as 
baseline algorithms in this study, and are described in the appendix. Herein, we pre-define two commonly used 
parameters in the calculation of entropy metrics: embedding dimension m  =  1 and distance threshold r  =  0.1 
times the standard deviation of the RR interval time series. We set m  =  1 because the appropriate embedding 
dimension m is suggested to deal with the time series with a length of 10m to 10m+1 (Lake and Moorman 2011). 
Entropy is influenced with the setting of r, and r  =  0.1 times the standard deviation is verified to provide more 
stable outputs for the short-term RR interval time series (Zhao et al 2015).

2.2.  Normalized fuzzy entropy
The core calculation of Hc , similar to Hσ, uses a Heaviside function to classify vector similarity in a binary 
fashion. This rigid determination results in weak statistical stability. In contrast, Hθ uses a fuzzy function to 
smooth the decision boundary and is far less sensitive to small changes in r (Liu and Zhao 2011, Liu et al 2013). In 
this study, we generate Hθ

N from Hθ using a similar method as was used to generate Hc  from Hσ. We now describe 
this process.

For an RR time series x(i)(1 � i � N), firstly form the local vector sequences Lm
i  and global vector sequences 

Gm
i  respectively (1 � i � N − m):

Lm
i = {x(i), x(i + 1), · · · , x(i + m − 1)} − x̄(i)� (1)

Gm
i = {x(i), x(i + 1), · · · , x(i + m − 1)} − x̄.� (2)

The vector Lm
i  represents m consecutive x(i) with the local mean, x̄(i) = 1

m

∑m−1
k=0 x(i + k), subtracted. The 

vector Gm
i  also represents m consecutive x(i) values with the global mean, x̄ = 1

N

∑N
i=1 x(i), removed.

The distance between the local vector sequences Lm
i  and Lm

j , and the distance between the global vector 
sequences Gm

i  and Gm
j  are respectively defined as

dLm
i,j = d[Lm

i , Lm
j ] = max

0�k�m−1
|(x(i + k)− x̄(i))− (x( j + k)− x̄( j))|� (3)

dGm
i,j = d[Gm

i , Gm
j ] = max

0�k�m−1
|(x(i + k)− x̄)− (x( j + k)− x̄)|.� (4)

We calculate the similarity degree DLm
i,j(nL, rL) between local vectors Lm

i  and Lm
j  by the fuzzy function 

µL(dLm
i,j, nL, rL), and also calculate the similarity degree DGm

i,j(nG, rG) between global vectors Gm
i  and Gm

j  by the 

fuzzy function µG(dGm
i,j, nG, rG) as

DLm
i,j(nL, rL) = µL(dLm

i,j, nL, rL) = exp(−
(dLm

i,j)
nL

rL
)� (5)
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DGm
i,j(nG, rG) = µG(dGm

i,j, nG, rG) = exp(−
(dGm

i,j)
nG

rG
)� (6)

where nL is the local similarity weight, rL is the local tolerance threshold, nG is the global similarity weight and rG 
is the global tolerance threshold.

We define the functions BLm(nL, rL) and BGm(nG, rG) as

BLm(nL, rL) =
1

N − m

N−m∑
i=1

(
1

N − m

N−m∑
j=1

DLm
i,j(nL, rL))� (7)

BGm(nG, rG) =
1

N − m

N−m∑
i=1

(
1

N − m

N−m∑
j=1

DGm
i,j(nG, rG)).� (8)

BLm(nL, rL) and BGm(nG, rG) measure the mean similarity degrees for the local and global vectors at 
dimension m respectively. Similarly, we define the functions of mean similarity degrees ALm+1(nL, rL) and 
AGm+1(nG, rG) for dimension m  +  1 respectively as

ALm+1(nL, rL) =
1

N − m

N−m∑
i=1

(
1

N − m

N−m∑
j=1

DLm+1
i,j (nL, rL))� (9)

AGm+1(nG, rG) =
1

N − m

N−m∑
i=1

(
1

N − m

N−m∑
j=1

DGm+1
i,j (nG, rG)).� (10)

Then, unlike Hθ which uses a probability-based method (equations A16 and A17 in the appendix), we use 
a density-based method to generate a quadratic fuzzy local measure entropy (Hθ

L) and a quadratic fuzzy global 
measure entropy (Hθ

G) using the volume of each matching region, i.e. (2r)m as6

Hθ
L = − ln(

ALm+1(nL, rL)/(2rL)
m+1

BLm(nL, rL)/(2rL)m
) = − ln(

ALm+1(nL, rL)

BLm(nL, rL)
) + ln(2rL)� (11)

Hθ
G = − ln(

AGm+1(nG, rG)/(2rG)
m+1

BGm(nG, rG)/(2rG)m
) = − ln(

AGm+1(nG, rG)

BGm(nG, rG)
) + ln(2rG).� (12)

We also subtract the natural log of the mean RR interval from Hθ
L  and Hθ

G  (as per Lake and Moorman (2011), 
and equation A21 in the appendix) as follows:

Hθ
L = − ln(

ALm+1(nL, rL)

BLm(nL, rL)
) + ln(2rL)− ln(RRmean)� (13)

Hθ
G = − ln(

AGm+1(nG, rG)

BGm(nG, rG)
) + ln(2rG)− ln(RRmean).� (14)

Finally, Hθ
N is calculated as

Hθ
N =Hθ

L +Hθ
G = − ln(

ALm+1(nL, rL)

BLm(nL, rL)
)− ln(

AGm+1(nG, rG)

BGm(nG, rG)
)

+ ln(2rL) + ln(2rG)− 2 × ln(RRmean)

�

(15)

where RRmean is the mean of RR intervals in the current window, RRmean, rL and rG are expressed in units of s.

2.3.  Determination of r values
Inaccurate probability estimates can often be avoided since both Hc  and Hθ

N allow the flexibility to vary r. 
Therefore determining a proper r value for Hc  and Hθ

N is crucial. The recommended method from the original 
work for Hc  (called the minimum numerator count method) (Lake 2006, Lake and Moorman 2011) is to vary 
the r value from an initial value of 0.03 s until a specified number of matches for Am+1(r) is attained. In Lake and 
Moorman (2011), a minimum numerator count of five was recommended to maximize AF detection accuracy 
for a 12-beat RR time series.

6 We note that the correct volume would require evaluating the sort of integral of the Gaussian kernel function, i.e. the fuzzy 
function with nL  =  2 and nG  =  2 (Lake 2009, Darmon 2016). However, to keep a constant expression with Hc , herein we use 
the expression of (2r)m. Although it will not affect the detection performance, it needs to be re-defined if the actual value of the 
quadratic entropy rate needs to be determined.
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However, the detailed description explaining how to vary the r value from the initial value of 0.03 s to achieve 
the minimum numerator count of five is unclear. Moreover, methods for dealing with the two potential risks due 
to infinite outputs were also not provided. Here, we describe a detailed calculation process for determining the 
proper r values for both Hc  and Hθ

N methods in figure 1.
In addition, for Hθ

N, we also use this ‘minimum numerator count of five’ method to determine a proper r 
value. The operation is the same with Hc  by using the maximum absolute difference between two vectors. Once 
the appropriate r value is found, the distance matrix is constructed with the fuzzy function.

3.  Experimental data and evaluation methods

3.1.  Experimental data
Three standard datasets were obtained from PhysioNet (Goldberger et  al 2000). We followed the method 
described previously in Colloca (2013), Colloca et al (2013) and Oster and Clifford (2015). First, the MIT-BIH 
AF database was used as the training dataset since it contains a sufficiently large number of AF and other rhythm 
episodes and thus can be used to determine stable and useful parameter values (Colloca 2013). This is also the 
most commonly used dataset and provides the widest comparability with other publications. Subsequently, 
the MIT-BIH normal sinus rhythm (MIT-BIH NSR) database and MIT-BIH arrhythmia database were used to 
test the performance of entropy measures. By using separate databases for training and testing, we significantly 
reduced the probability of over-fitting to recording methods (such as lead position and electrode preparation), 
patient selection, and recording parameters (such as background noise, bandwidth, analog filtering, sampling 
rate, electrode choice, etc).

	(1)	� MIT-BIH AF database. The MIT-BIH AF database includes 25 long-term ECG recordings with rhythm 
and beat annotation files. Individual ECG recordings are 10 h in duration and were sampled at 250 Hz, 
resulting in a minimum temporal resolution of 0.004 s for the RR time series. Rhythm annotations 
were performed manually for four types: AF, AFL (atrial flutter), J (AV junctional rhythm) and N (used 
to indicate all other rhythms). Beat annotations were prepared using an automated detector with two 
recordings (no. 05091 and no. 07859) corrected manually.

	(2)	� MIT-BIH normal sinus rhythm database. The MIT-BIH NSR database includes 54 long-term ECG 
recordings (roughly 24 h for each). In these recordings, no significant arrhythmias were diagnosed, 
except the presence of ectopic beats. Therefore, all rhythms in this database were labeled as non-AF 
rhythms. The sampling rate was 128 Hz, giving a minimum temporal resolution of approximately 

Figure 1.  Flow chart of the detailed calculation process for determining the r values for Hc  and Hθ
N methods using the rule of 

‘minimum numerator count of five’.

Physiol. Meas. 39 (2018) 074002 (18pp)
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0.008 s for the RR time series. Beat annotations were obtained by automated analysis with manual 
review and correction.

	(3)	� MIT-BIH arrhythmia database. The MIT-BIH arrhythmia database includes 48 short-term (30 min) 
ECG recordings chosen from a set of 4000 24 h ambulatory ECGs. This database can be divided into 
two sub-databases: the series 100 (MIT-BIH AS100) includes 23 subjects with non-AF rhythms; the 
series 200 (MIT-BIH AS200) includes eight AF subjects, containing both AF rhythm and a variety 
of non-AF rhythms such as atrial and ventricular bigeminy, ventricular trigeminy, AFL, ventricular 
flutter, and ventricular and supraventricular tachycardia. The sampling rate was 360 Hz, giving 
a minimum temporal resolution of about 0.003 s for the RR time series. Beats were annotated 
independently by at least two cardiologists.

3.2.  Evaluation methods
For the MIT-BIH AF database, first, the RR time series corresponding to the four rhythm types (AF, AFL, J and 
N) were extracted to permit comparison between AF and N rhythm types while excluding the influences of AFL 
and J rhythm types. Then, the RR time series corresponding to the latter three rhythm types (AFL, J and N) 
were merged as non-AF rhythms to enable comparison against AF and non-AF rhythm types. For the MIT-BIH 
NSR and AS100 databases, all RR time series were regarded as non-AF rhythm types. For the MIT-BIH AS200 
database, the RR time series were regarded as AF type during the AF rhythm episodes, and non-AF type during 
other rhythm episodes.

Data pre-processing was performed on the classified RR episodes. RR intervals greater than 2 s were removed 
to eliminate the influence of the missed QRS detection due to noise or ECG electrode drop out. Three types of 

Table 1.  MIT-BIH database profile separated by the different rhythm types. For each rhythm type, the numbers and the corresponding 
percentages (%) are given. #: number of AF: atrial fibrillation, AFL: atrial flutter, J: AV junctional rhythm, N: rhythms except AF, AFL and 
J rhythms, NSR: normal sinus rhythm, AS100: arrhythmia series 100 database, AS200: arrhythmia series 200 database, unknown: beat 
classification was not available.

Database Variable AF rhythm

Non-AF rhythm

N AFL J Total

AF # rhythm episodes 299 (48.0%) 292 (46.9%) 14 (2.2%) 18 (2.9%) 324 (52.0%)

Total time length (h) 93.5 (37.5%) 149.1 (59.8%) 1.4 (0.6%) 5.2 (2.1%) 155.7 (62.5%)

# RR intervals 521 415 (42.6%) 663 202 (54.2%) 11 710 (1.0%) 26 818 (2.2%) 701.730 (57.4%)

# RR intervals (⩽2 s) 521 359 (42.6%) 662 971 (54.2%) 11 710 (1.0%) 26 813 (2.2%) 701 494 (57.4%)

# RR segments (12-beat) 43 307 (42.6%) 55 115 (54.2%) 969 (1.0%) 2227 (2.2%) 58 311 (57.4%)

# RR segments (30-beat) 17 247 (42.6%) 21 968 (54.3%) 383 (0.9%) 886 (2.2%) 23 237 (57.4%)

# RR segments (60-beat) 8552 (42.6%) 10 904 (54.3%) 190 (0.9%) 441 (2.2%) 11 535 (57.4%)

NSR # rhythm episodes 0 (0%) Unknown Unknown Unknown 54 (100%)

Total time length (h) 0 (0%) Unknown Unknown Unknown 1247 (100%)

# RR intervals 0 (0%) Unknown Unknown Unknown 5790 504 (100%)

# RR intervals (⩽2 s) 0 (0%) Unknown Unknown Unknown 5780 148 (100%)

# RR segments (12-beat) 0 (0%) Unknown Unknown Unknown 481 657 (100%)

# RR segments (30-beat) 0 (0%) Unknown Unknown Unknown 192 643 (100%)

# RR segments (60-beat) 0 (0%) Unknown Unknown Unknown 96 308 (100%)

AS100 # rhythm episodes 0 (0%) Unknown Unknown Unknown 227 (100%)

Total time length (h) 0 (0%) Unknown Unknown Unknown 11.5 (100%)

# RR intervals 0 (0%) Unknown Unknown Unknown 48 200 (100%)

# RR intervals (⩽2 s) 0 (0%) Unknown Unknown Unknown 48 200 (100%)

# RR segments (12-beat) 0 (0%) Unknown Unknown Unknown 3904 (100%)

# RR segments (30-beat) 0 (0%) Unknown Unknown Unknown 1515 (100%)

# RR segments (60-beat) 0 (0%) Unknown Unknown Unknown 736 (100%)

AS200 # rhythm episodes 107 (7.1%) Unknown Unknown Unknown 1394 (92.9%)

Total time length (h) 2.2 (17.6%) Unknown Unknown Unknown 10.3 (82.3%)

# RR intervals 11 670 (18.1%) Unknown Unknown Unknown 52 728 (81.9%)

# RR intervals (⩽2 s) 11 670 (18.2%) Unknown Unknown Unknown 52 605 (81.8%)

# RR segments (12-beat) 922 (19.2%) Unknown Unknown Unknown 3881 (80.8%)

# RR segments (30-beat) 344 (19.7%) Unknown Unknown Unknown 1403 (80.3%)

# RR segments (60-beat) 157 (19.8%) Unknown Unknown Unknown 636 (80.2%)
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beat window length (BWL)—12, 30, and 60 beats—were used to segment RR episodes without overlap. Table 1 

shows the detailed database profile.
Hσ, Hθ, Hc  and Hθ

N values were calculated for each of the selected RR segments. These entropy measures 
were compared between the AF and N rhythm types for the MIT-BIH AF database, and between the AF and non-
AF rhythm types for the MIT-BIH AF and AS200 databases. Entropy measures were also evaluated for how well 
non-AF rhythms were rejected using both the MIT-BIH NSR and AS100 databases.

Entropy values on one side of threshold c were labeled as AF rhythms and values on the other side of c were 
labeled as non-AF rhythms. Classifier accuracy was assessed via the following performance metrics:

Sensitivity: Se = TP/(TP + FN)

Specificity: Sp = TN/(TN + FP)

Accuracy: Acc = (TP + TN)/(TP + FP + FN + TN)

Positive predictive value: PPV = TP/(TP + FP)

Negative predictive value: NPV = TN/(TN + FN)

Total error: Err = (FP + FN)/(TP + FP + FN + TN)

where TP, TN, FP and FN are the numbers of true positives, true negatives, false positives and false negatives 
respectively.

Figure 2.  Block diagram of the evaluation procedure used in this study.
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The receiver operating characteristic (ROC) curve was used to evaluate the effectiveness of each entropy 
measure in the AF classification. The ROC curve is a plot of (Se) versus (1  −  Sp) for many possible values of c, 
which varied from the minimum to the maximum of the entropy outputs, with a step of 1% of the range. AUC 
was used to evaluate the performance of different entropy measures. The Youden index (J), another metric for 
assessing ROC curves, was also calculated as

J = maxc{Se(c) + Sp(c)− 1}.
� (16)

At the optimal cut-point c*, J is maximized and the classifier equally weighs sensitivity and specificity. In this 
study, the opitic* values were determined (trained) from the MIT-BIH AF database, and then were used (tested) 
on other MIT-BIH databases. The aforementioned performance metrics of Se, Sp, Acc, PPV , NPV  and Err were 
given at the point of c*. Only Sp was evaluated for both the MIT-BIH NSR and AS100 databases, which lacked the 
AF rhythm. The evaluation procedure described above is illustrated in figure 2, which consisted of three major 
steps. Step 1: data pre-processing; step 2: entropy calculation; and step 3: evaluation for AF rhythm classification.

4.  Results

Figure 3 shows the histograms of the four entropy measures for the four rhythm types (AF, N, AFL and J) in the 
MIT-BIH AF database when using 12-beat, 30-beat and 60-beat RR segments respectively. The departures of AF 
rhythm from the N rhythm are more obvious in Hc  and Hθ

N than those in Hσ and Hθ, and compared with Hc , 
Hθ

N exhibits a superior performance. In addition, it is worth noting that the AFL and J rhythm types only occupy 
small proportions.

Figure 4 illustrates the ROC curves with AUC values obtained using the four entropy measures and the MIT-
BIH AF database for classifier testing. The upper plots (A1–C1) show the results for classifying AF and N rhythm 
types and the lower plots (A2–C2) for classifying AF and non-AF rhythm types using 12-beat, 30-beat and 
60-beat windows (from left to right).

To classify AF and N rhythms and for each BWL type, Hσ, Hθ, Hc  and Hθ
N result in the lowest to highest AUCs, 

in order. For the 12-beat RR segments, the AUC values are 54.09%, 63.89%, 92.16% and 93.59% respectively for 
the four entropy measures. For the 30-beat RR segments, they are 73.83%, 79.05%, 92.49% and 95.70% respec-
tively, and for the 60-beat RR segments, they are 80.60%, 86.82%, 91.23% and 97.04% respectively. With an 
increase in BWL, the AUC values gradually increase for Hσ, Hθ and Hθ

N but not for the Hc . We also note that the 
AUC of Hc  for the 60-beat RR segments is even lower than that for the 30-beat RR segments.
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Figure 3.  Distributions of the four entropy measures for the four rhythm types (AF, N, AFL and J) in the MIT-BIH AF database 
with the different time windows of RR segments: (A) 12-beat, (B) 30-beat and (C) 60-beat. Note that the proportions of AFL and 
J rhythm types are much smaller. The departure of the AF rhythm type from the N rhythm type is more obvious in the proposed 
method (Hθ

N) than the other three entropy measures: sample entropy (SampEn, Hσ), fuzzy measure entropy (FuzzyMEn, Hθ), 
coefficient of sample entropy (COSEn, Hc).
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The AUC results for classifying AF and non-AF rhythms show a similar trend as seen in the classification of 
AF and N rhythms. The following AUC values are for classifiers using Hσ, Hθ, Hc  and Hθ

N, respectively. For the 
12-beat RR segments, the AUC values are 54.73%, 64.30%, 91.12% and 92.72% respectively, for the 30-beat RR 
segments, the AUC values are 74.68%, 79.24%, 91.86% and 95.27% respectively, and for the 60-beat RR seg-
ments, the AUC values are 81.27%, 86.94%, 90.55% and 96.76% respectively. Because the AFL and J rhythm 
types are included in the non-AF rhythm, the AUC values for both Hc  and Hθ

N slightly decreased. The AUC values 
decreased by 1.04%, 0.53% and 0.68% respectively for the three BWL types when using Hc . They decreased less 
for Hθ

N, with values of 0.87%, 0.23% and 0.28% respectively.
Table 2 summarizes the classifier performance metrics. Compared with the other entropy measures, Hθ

N gen-
erally resulted in the largest values of J, Se, Sp, Acc, PPV  and NPV , and the smallest values of Err, for each of the 
three BWL types. Specifically, Hθ

N resulted in the highest Se values of 96.58%, 96.71% and 98.46% respectively for 
the three time window lengths for the MIT-BIH AF database. These values were even higher at 97.94%, 97.97% 
and 98.73% for the MIT-BIH AS200 database. In comparison, Hc  resulted in Se values of 96.24%, 94.93% and 
84.33% for the MIT-BIH AF database and 97.72%, 97.38% and 85.99% for the MIT-BIH AS200 database. Both 
Hc  and Hθ

N output larger Se values than Hσ and Hθ. We expect the increase in the time window length to increase 
the Se values of all entropy measures since more physiological signal information is used. This trend is observed 

for Hθ and Hθ
N but not for Hσ and Hc .

Hθ
N also resulted in the highest values for Sp: 83.31%, 87.52% and 89.85% respectively for the three time 

window types for the MIT-BIH AF database. Sp was higher for Hθ
N when using the MIT-BIH NSR database, with 

values of 92.45%, 95.16% and 96.75%. Considering the large amount of the MIT-BIH NSR data (about 1247 h, 
see table 1), the high Sp for Hθ

N demonstrates its ability to accurately exclude non-AF beats from AF. Sp of Hθ
N was 

lower at 78.79%, 84.29% and 87.50% respectively for the MIT-BIH AS100 database, and even lower at 58.49%, 
68.35% and 70.60% for the MIT-BIH AS200 database. Nevertheless, these values were superior to those obtained 
from the other entropy measures. The lower Sp values for Hθ

N were mainly due to the presence of many other 
types of arrhythmia beats included in the non-AF rhythm type in addition to NSR beats. This complicated the 
task of classifying AF and non-AF rhythms. In comparison with Hθ

N, Hc  produced similar Sp values for both the 
MIT-BIH AS100 and AS200 databases, but produced significantly lower Sp values for the MIT-BIH NSR data-
base, indicating that Hc  is not an optimal measure that should be used for excluding NSR beats from AF. Inter-
estingly, for the MIT-BIH NSR database, Sp values using Hc  were 87.97%, 81.69%, and 83.18% for BWL  =  12, 
30, and 60 beats respectively. Unlike the trend observed when using other entropy measures, Sp did not increase 
concurrently with window length for Hc .

Figure 4.  ROC curve plots with AUC values for the four entropy measures in the MIT-BIH AF database for classifying AF and N 
rhythm types (A1–C1) and for classifying AF and non-AF rhythm types (A2–C2). Three time window types of the RR segment were 
used: (A1) and (A2) for 12-beat, (B1) and (B2) for 30-beat, and (C1) and (C2) for 60-beat RR segments. The four methods tested 
were sample entropy (SampEn, Hσ), fuzzy measure entropy (FuzzyMEn, Hθ), coefficient of sample entropy (COSEn, Hc) and the 
proposed method (Hθ

N).
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Finally, Hσ exhibited the lowest Se and Sp. Hθ was superior to Hσ, although both were inferior to Hc  and 
Hθ

N. Based on the observed Se and Sp, Hθ
N provided the highest accuracy and largest Youden indices for both the 

MIT-BIH AF and AS200 databases. Moreover, increasing the BWL from 12-beat to 30-beat to 60-beat significantly 
increased the performance metrics, with a longer window resulting in higher classification accuracies when using 
Hθ

N. We note that accuracy only exceeds 90% when using Hθ
N and a window size of 30-beat or 60-beat RR segments.

5.  Discussion

5.1.  Further explanation for entropy measures
Fuzzy function-based entropy measures (Hθ and Hθ

N) were more consistent than Heaviside function-based 
entropy measures (Hσ and Hc) (figure 3 and table 2). Specifically, classifier performance increased with window 
length for Hθ and Hθ

N, but not for Hσ and Hc  when BWL was increased from 12-beat to 60-beat. This may be 
due to the rigid membership degree determination (0–1 determination) in the Heaviside function—a limitation 
described earlier (Chen et al 2009, Liu et al 2013, Zhao et al 2015).

Entropy measures that measure similarity using the 0–1 determination run the risk of counting very few 
matching vectors, which can result in output values of infinity or undefined. In this study, Hσ produced many 
values of infinity or undefined when processing 12-beat RR segments. This issue occasionally arose even when 
processing 30-beat and 60-beat RR segments. For Hc , we developed a process to determine suitable r values (see 
figure 1) and thus to successfully avoid the boring invalid output. The fuzzy function-based entropy measures 
(Hθ and Hθ

N) consider actual distances between two vectors rather than the numbers of matched vectors, and 
avoid this limitation. We have summarized the numbers of valid and invalid values of Hσ, as well as the percent
ages of the valid values of Hσ for each of the four MIT-BIH databases, as table D1 in the appendix.

5.2.  Optimized threshold parameter r for SampEn
Although m and r are critical in determining the outcome of entropy estimation, no standard guidelines exist 
for optimizing their values (Lake et al 2002, Ramdani et al 2009). In Zhao et al (2015), r  =  0.1 times the standard 
deviation of the RR time series was recommended. This study used this recommendation. Herein, we compared 
the SampEn results for different threshold r choices, which varied under two schemes. The first scheme is that r 
is equal to different ratios (i.e. 0.1–0.9 with a step of 0.1) of the standard deviation of the current RR segments 
(with 12 beats). The second scheme is that r is equal to different ratios (i.e. 0.1–0.9 with a step of 0.1) of the 
mean standard deviation of all RR segments (also with 12 beats), to stimulate the constant r value of the 30 ms 
suggested in Lake and Moorman (2011).

Table 2.  Results of the performance metrics for the four entropy measures in all MIT-BIH databases. AF: atrial fibrillation, NSR: normal 
sinus rhythm, AS100: arrhythmia series 100 database, AS200: arrhythmia series 200 database, BWL: beat window length, c*: the optimal 
cut-point, J: Youden index, Se: sensitivity, Sp: specificity, Acc: accuracy, PPV : positive predictive value, NPV : negative predictive value, Err: 
total error. The best performance figures are in bold.

Database

Metric

BWL

Hσ Hθ Hc Hθ
N

12 30 60 12 30 60 12 30 60 12 30 60

AF c* 1.08 2.05 2.20 1.01 0.91 0.88 −1.32 −1.58 −1.60 −1.76 −1.42 -1.19

J (%) 15.38 37.16 50.97 23.08 48.73 63.39 78.74 78.78 71.30 79.89 84.23 88.30

Se (%) 83.80 78.88 83.41 74.54 85.82 89.80 96.24 94.93 84.33 96.58 96.71 98.46

Sp (%) 31.58 58.28 67.56 48.63 62.91 73.58 82.49 83.85 86.97 83.31 87.52 89.85

Acc (%) 44.25 66.37 74.31 59.62 72.67 80.49 88.35 88.57 85.85 88.96 91.43 93.51

PPV  (%) 28.19 55.03 65.59 51.82 63.20 71.60 80.33 81.35 82.75 81.12 85.18 87.79

NPV  (%) 85.89 81.00 84.60 71.97 85.67 90.63 96.73 95.70 88.22 97.05 97.29 98.74

Err (%) 55.75 33.63 25.69 40.38 27.33 19.51 11.65 11.43 14.15 11.03 8.57 6.49

NSR Sp (%) 17.86 61.44 71.77 51.26 72.80 84.27 87.97 81.69 83.18 92.45 95.16 96.75

AS100 Sp (%) 28.70 42.11 42.30 47.28 61.45 69.97 79.25 82.57 87.64 78.79 84.29 87.50

AS200 J (%) 16.76 31.30 46.79 27.34 54.02 64.54 54.13 61.10 56.11 56.43 66.32 69.32

Se (%) 84.34 78.60 87.26 73.64 88.66 93.63 97.72 97.38 85.99 97.94 97.97 98.73

Sp (%) 32.41 52.70 59.52 53.70 65.36 70.91 56.40 63.72 70.13 58.49 68.35 70.60

Acc (%) 38.52 57.60 65.06 57.53 69.95 75.41 64.33 70.35 73.27 66.06 74.18 76.17

PPV  (%) 12.25 27.93 34.95 27.42 38.56 44.28 34.75 39.69 41.54 35.92 43.15 45.32

NPV  (%) 93.95 91.34 94.94 89.56 95.92 97.83 99.05 99.00 95.30 99.17 99.28 99.56

Err (%) 61.48 42.40 34.94 42.47 30.05 24.59 35.67 29.65 26.73 33.94 25.82 23.83
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Table 3 shows the effect of varied threshold r on the SampEn results for 12-beat RR segments in the MIT-BIH 
AF database. When r increases from 0.1–0.9 times the standard deviation of the current RR segments, the clas-
sification accuracy firstly quickly increases to 58.01% at 0.2 times the standard deviation and then keeps at this 
constant level with a slight fluctuation. The optimal cut-point r decreases stably. When considering r as a constant 
ratio of the mean standard deviation of all RR segments, the classification accuracy reports high levels, which 
has an Acc of 76.50% for r  =  0.1 times the mean standard deviation and increases to a peak of 86.68% for r  =  0.3 
times the mean standard deviation. The optimal cut-point r also decreases stably, from 1.37 to 0.80. However, 
although relatively high accuracy is achieved, the ratio of RR segments with invalid SampEn calculation is large, 
with reports as large as 38.81% for r  =  0.1 times the mean standard deviation. Again, with an increase of r, the 
possibility of ‘no matching’ for vector similarity decreases for the 12-beat RR segments. Thus, the ratio of RR 

segments with invalid SampEn calculation decreases to 1.07% for r  =  0.9 times the mean standard deviation.

5.3.  Effect of ‘minimum numerator count’ on AUC Values
Figure 5 shows the effect of the ‘minimum numerator count’ on the AUC values for Hc  and Hθ

N measures for 
30-beat and 60-beat RR segments respectively. The comparisons were performed between at least five vectors for 
vector matching and at least Ratio × N  vectors for vector matching. We can determine which choice is better by 
comparing the corresponding AUC values. For the 30-beat RR segment, counting at least five vectors for vector 
matching is the best choice for Hc . However, counting at least 50% N vectors for vector matching enhances the 
AUC value of 0.44% for Hθ

N. For the longer 60-beat RR segments, increasing the counting values could enhance 
the AUC value for both Hc  and Hθ

N, and the increase in Hc  is even larger than that in Hθ
N.

5.4.  AF detection: from clinical to practical application
AF, the most common sustained arrhythmia, and particularly frequent in patients with heart disease, is often 
asymptomatic and carries a substantially increased stroke risk (Healey et al 2012). Simple and accurate methods 
to detect AF could increase the rate of early diagnosis, as well as reduce costs related to healthcare resource 
utilization. An AF screening device should be easily accessible, cost-effective and easy for clinicians to use. In this 
study, we describe a novel entropy measure Hθ

N that achieves superior AF detection performance compared to 
previously described entropies. We validated Hθ

N with different databases and time window lengths. AF detection 
based on Hθ

N is both conceptually simple and computationally efficient, allowing it to be potentially used in 
real-time. This approach may be applied to patients with implantable devices and for screening patients at high 
risk for development of AF. In addition, the method for constructing Hθ

N may also have other applications in 

Table 3.  Effect of varied threshold r on the SampEn results in the MIT-BIH AF database. The RR time series uses a window of 12 RR 
intervals. SD: standard deviation, c*: the optimal cut-point, J: Youden index, Se: sensitivity, Sp: specificity, Acc: accuracy, PPV : positive 
predictive value, NPV : negative predictive value, Err: total error, RIS: ratio of RR segments with invalid SampEn calculation.

Metric

Hσ with varied threshold r (×SD of the current RR segment)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

c* 1.08 1.11 1.08 1.12 1.03 0.88 0.80 0.76 0.70

J (%) 15.38 22.50 20.85 17.90 16.69 17.27 17.19 16.67 14.78

Se (%) 83.80 80.20 83.77 72.68 72.32 75.10 72.98 67.80 56.19

Sp (%) 31.58 42.30 37.07 45.21 44.37 42.17 44.21 48.88 58.59

Acc (%) 44.25 58.01 58.28 57.65 56.87 56.74 56.89 57.20 57.54

PPV  (%) 28.19 49.61 52.54 52.32 51.25 50.77 50.76 51.04 51.60

NPV  (%) 85.89 75.09 73.32 66.68 66.46 68.08 67.50 65.87 62.99

Err (%) 55.75 41.99 41.72 42.35 43.13 43.26 43.11 42.80 42.46

Metric

Hσ with fixed threshold r (×mean SD of all RR segments)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

c* 1.37 1.37 1.28 1.23 1.12 1.03 0.95 0.83 0.80

J (%) 41.72 60.42 63.58 64.17 64.40 66.03 65.61 67.87 65.00

Se (%) 62.97 67.94 67.85 66.96 66.86 68.64 68.18 71.10 68.01

Sp (%) 78.75 92.48 95.72 97.20 97.53 97.40 97.43 96.77 96.99

Acc (%) 76.50 86.30 86.68 86.06 85.40 85.53 85.04 85.73 84.41

PPV  (%) 33.04 75.24 88.41 93.33 94.67 94.88 95.11 94.31 94.53

NPV  (%) 92.74 89.55 86.11 83.44 81.80 81.54 80.65 81.62 79.82

Err (%) 23.50 13.69 13.12 13.94 14.60 14.47 14.96 13.56 15.59

RIS(%) 38.81 26.02 17.29 11.31 7.31 4.63 2.85 1.79 1.07
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biomedical signal processing, such as in developing specific entropy measures for detecting patients with heart 
failure, diabetes, etc.

5.5.  Limitations
Atrial flutter has a similar clinical profile to AF but exhibits different RR interval dynamics. Some studies regard 
atrial flutter as an AF rhythm (Lake and Moorman 2011, DeMazumder et al 2013) whereas others regard it as 
a non-AF rhythm (Colloca 2013, Oster and Clifford 2015). In this study, we defined atrial flutter as a non-AF 
rhythm and found that there was little difference between classifying AF and non-AF (including atrial flutter) 
rhythms and classifying AF and normal sinus (not including atrial flutter) rhythms. This may be due to the small 
proportion of atrial flutter beats in the data. Second, sinus rhythm with frequent ectopic beats can resemble 
AF RR interval dynamics. We did not consider this in our study due to a lack of gold-standard labels for ectopic 
beats. Third, the R-peak annotations in this study were labeled by experts, so performance will likely drop when 
using real QRS detectors. Fourth, since the length of a 12-beat RR segment is short, when considering the large 
dimension m (such as m  =  2, or 3), the ratio of RR segments with invalid SampEn calculation is very high, 
resulting in most of the 12-beat RR segments in the AF group output producing invalid SampEn values. Thus, 
only m  =  1 is used in the current study. Finally, employing a new larger AF database can definitely be beneficial 
for systematically evaluating the proposed entropy method. In addition, we note that machine learning methods, 
which combine multiple metrics (see Colloca et al (2013) and Oster and Clifford (2015)), may improve AF 
classification performance compared to using Hθ

N alone. We leave these issues to future studies.

6.  Conclusion

Here, we propose normalized fuzzy entropy (Hθ
N), a novel entropy measure suitable for AF detection based 

on a short-term RR time series. Hθ
N uses a fuzzy function to determine vector similarity, replaces a probability 

estimate with a density estimate for entropy approximation, utilizes a flexible distance threshold parameter, and 
adjusts for heart rate by subtracting the natural log of mean RR intervals. The performance of Hθ

N was tested on 
the MIT-BIH AF, NSR and arrhythmia databases (containing more than 1500 h of RR interval time series) and 
compared against three existing entropy-based metrics: Hσ, Hθ and Hc . Our results demonstrate that Hθ

N is an 
accurate measure for detecting AF.
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Appendix A.  Sample entropy

The calculation process of SampEn, or Hσ, can be summarized as follows (Richman and Moorman 2000).
For an RR time series x(i) (1 � i � N), given the parameters of embedding dimension m and distance 

threshold r, first form the vector sequences Xm
i  (1 � i � N − m):

Xm
i = {x(i), x(i + 1), · · · , x(i + m − 1)}.� (A.1)

The vector Xm
i  represents m consecutive x(i) values. Then the distance between Xm

i  and Xm
j  based on the 

maximum absolute difference is defined as

dm
i,j = d[Xm

i , Xm
j ] = max0�k�m−1|x(i + k)− x( j + k)|.� (A.2)

For each Xm
i , denote Bm

i (r) as (N  −  m)−1 times the number of Xm
j  that meets dm

i,j � r . Similarly, set Am+1
i (r) is 

(N  −  m)−1 times the number of Xm+1
j  that meets dm+1

i,j � r for all 1 � j � N − m. The total number of match-
ing vectors at dimension m  +  1 and m could be calculated as

Am+1(r) =
N−m∑
i=1

Am+1
i (r)� (A.3)

Bm(r) =
N−m∑
i=1

Am
i (r).� (A.4)

Then Hσ is defined by

Hσ = − ln(
Am+1(r)

Bm(r)
).� (A.5)

Hσ is therefore the negative natural log of the conditional probability of vector matching between dimension 
m and m  +  1.

Appendix B.  Fuzzy measurement entropy

The calculation process of FuzzyMEn, or Hθ, can be summarized as follows (Liu and Zhao 2011, Liu et al 2013).
For an RR time series x(i)(1 � i � N), first form the local vector sequences Lm

i  and global vector sequences 
Gm

i  respectively (1 � i � N − m):

Lm
i = {x(i), x(i + 1), · · · , x(i + m − 1)} − x̄(i)� (B.1)

Gm
i = {x(i), x(i + 1), · · · , x(i + m − 1)} − x̄.� (B.2)

The vector Lm
i  represents m consecutive x(i) but removing the local baseline x̄(i) = 1

m

∑m−1
k=0 x(i + k). The 

vector Gm
i  also represents m consecutive x(i) but removing the global mean value x̄ = 1

N

∑N
i=1 x(i).

The distance between local vector sequences Lm
i  and Lm

j  and the distance between global vector sequences Gm
i  

and Gm
j  are respectively defined as

dLm
i,j = d[Lm

i , Lm
j ] = max

0�k�m−1
|(x(i + k)− x̄(i))− (x( j + k)− x̄( j))|� (B.3)

dGm
i,j = d[Gm

i , Gm
j ] = max

0�k�m−1
|(x(i + k)− x̄)− (x( j + k)− x̄)|.� (B.4)

Given the following parameters: local similarity weight nL, local tolerance threshold rL, global similarity 

weight nG and global tolerance threshold rG, we calculate the similarity degree DLm
i,j(nL, rL) between local vectors 

Lm
i  and Lm

j  by the fuzzy function µL(dLm
i,j, nL, rL), and also calculate the similarity degree DGm

i,j(nG, rG) between 

global vectors Gm
i  and Gm

j  by the fuzzy function µG(dGm
i,j, nG, rG) as

DLm
i,j(nL, rL) = µL(dLm

i,j, nL, rL) = exp(−
(dLm

i,j)
nL

rL
)� (B.5)

DGm
i,j(nG, rG) = µL(dGm

i,j, nG, rG) = exp(−
(dGm

i,j)
nG

rG
).� (B.6)
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We define the functions BLm(nL, rL) and BGm(nG, rG) as

BLm(nL, rL) =
1

N − m

N−m∑
i=1

(
1

N − m

N−m∑
j=1

DLm
i,j(nL, rL))� (B.7)

BGm(nG, rG) =
1

N − m

N−m∑
i=1

(
1

N − m

N−m∑
j=1

DGm
i,j(nG, rG)).� (B.8)

Similarly, we define the functions AL(m+1)(nL, rL) for m  +  1 dimension local vectors Lm+1
i  and Lm+1

j , and the 

function AG(m+1)(nG, rG) for dimension m  +  1 global vectors Gm+1
i  and Gm+1

j  as

ALm+1(nL, rL) =
1

N − m

N−m∑
i=1

(
1

N − m

N−m∑
j=1

DLm+1
i,j (nL, rL))� (B.9)

AGm+1(nG, rG) =
1

N − m

N−m∑
i=1

(
1

N − m

N−m∑
j=1

DGm+1
i,j (nG, rG)).� (B.10)

Then the fuzzy local entropy measure (Hθ
L) and fuzzy global entropy measure (Hθ

G) are respectively defined 
by

Hθ
L = − ln(

ALm+1(nL, rL)

BLm(nL, rL)
)� (B.11)

Hθ
G = − ln(

AGm+1(nG, rG)

BGm(nG, rG)
).� (B.12)

Finally, the Hθ is calculated as the sum of these two latter measures:

Hθ = Hθ
L(m, nL, rL, N) +Hθ

G(m, nG, rG, N).� (B.13)

The parameters in equation (B.13) use the recommended settings in Zhao et al (2015): nL  =  2, nG  =  2, and rL 
is equal to rG, i.e. rL = rG = r. Equation (B.13) then becomes

Hθ = Hθ
L(m, r, N) +Hθ

G(m, r, N).� (B.14)

Appendix C.  Coefficient of sample entropy

COSEn, or Hc , was defined by Lake and Moorman (2011) and Carrara et al (2015) as an entropy measure derived 
from Hσ, designed specifically to detect AF in very short RR time series (Lake and Moorman 2011, Carrara et al 
2015). For Hσ, if Am+1(r) and Bm(r) in equation (A5) are equal, which means that the time series is very regular 
or predictable, the entropy value is zero, whereas if Am+1(r) is smaller than Bm(r), this leads to a higher value 
of entropy. An important advantage of Hσ compared with approximate entropy is that the self-matches are 
not counted (Richman and Moorman 2000). This significantly reduces bias but could induce the problem of 
lowering the counts of vector matching to the point that Am+1(r) and even Bm(r) can tend to zero, leading to 
infinite or indeterminate outputs (since Hσ is defined by their ratio). This becomes an increasing concern for the 
short time series (Lake and Moorman 2011).

To avoid this issue, a measure called quadratic sample entropy (Hq), based on densities rather than probabil-
ity estimates, was previously introduced (Lake 2006). Hq normalized Hσ by the volume of each matching region, 
i.e. (2r)m, and equation (A5) is rewritten as

Hq
L = − ln(

Am+1(r)/(2r)m+1

Bm(r)/(2r)m
) = − ln(

Am+1(r)

Bm(r)
) + ln(2r) = Hσ + ln(2r).� (C.1)

In addition, regression analyses showed that heart rate was an important independent predictor of AF (Lake 
and Moorman 2011). Hence, the Hc  measure uses the concept of density estimates of Hq but subtracts the natu-
ral log of mean RR interval from Hq as

Hc = Hq − ln(RRmean) = Hσ + ln(2r)− ln(RRmean)� (C.2)

where RRmean is the mean of RR intervals in the current window, and both r and RRmean use the unit s.

Physiol. Meas. 39 (2018) 074002 (18pp)



16

C Liu et al

Appendix D.  Analysis of valid and invalid values for entropy measures

As shown in table D1, the MIT-BIH NSR database gave the largest percentages of valid Hσ values for each of the 
three time window types: 57.7% for BWL  =  12, 94.4% for BWL  =  30 and 99.9% for BWL  =  60. This is because 
the irregular RR rhythms are much less than the other three databases. For the 12-beat RR segments, Hσ gave very 
low percentages of the valid numbers, only 39.1% for the MIT-BIH AF database, 28.9% for the MIT-BIH AS100 
database and 35.1% for the MIT-BIH AS200 database.
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