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QRS complex detection has been extensively studied over the past decades. Pan-Tompkins based methods
were the most widely used QRS complex detectors. These methods could obtain high accuracy on high-quality
clinical ECG data. However, the accuracy of the Pan-Tompkins based QRS detection methods on a low-quality
ECG database should be clarified. In this paper, three Pan-Tompkins based QRS complex detectors were
tested on both high and low-quality ECG databases, i.e., the original Pan-Tompkins method and the following
improved versions of Pan-Tompkins based method with mean and median peak level estimation respectively.
Two hundred 10-minute ECG recordings from the 2014 PhysioNet/CinC Challenge were used (100 from the
high-quality database and 100 from the low-quality database). Accuracy was used as the performance criterion
for the methods. All three Pan-Tompkins based QRS detection algorithms had high detection accuracies on
the high-quality ECG database (>99%), whereas relatively low detection accuracies were reported for the low-
quality ECG database (76.03% was the highest result for the Pan-Tompkins based method with median peak
level estimation and 74.49% was the lowest result for the original Pan-Tompkins method). We found that it is
better to use the median peak level estimation to avoid the sudden amplitude change effects. In addition, the
original Pan-Tompkins method had the highest computational efficiency. In this study, the performance of three
common Pan-Tompkins based QRS complex detection algorithms were systematically analyzed and their noise
responses were also tested. The conclusion generated by this study could potentially offer important reference
for the reasonable use of those methods.
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1. INTRODUCTION
Cardiovascular diseases (CVD’s) is the most common cause of
death globally. In 2012, CVD’s were the cause of death for about
17.5 million people, which equates to about 31% of all global
deaths.1 An electrocardiogram (ECG) signal, the expression of
the myocardium electrical activity on the body’s surface, provides
important information about the status of cardiac activity.2 The
accurate heart beat detection of ECG signal plays a fundamental
role in monitoring of CVD’s.3

The QRS complex is the most striking waveform within the
ECG signal; it serves as the basis for the automated determination
of the heart rate, as well as the benchmark point for classifying
the cardiac cycle and identifying any abnormality. Over the last
few decades, the QRS complex detection has been extensively
studied. The method introduced by Pan and Tompkins (Pan-
Tompkins)4 in 1985 was the best representative. It was widely
used and has been cited extensively in the literature as an unoffi-
cial benchmark for QRS detector performance.1�3�5�6 The features
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in this method were peak energy and double adaptive thresholds.
The Pan-Tompkins algorithm has been found to have a higher
accuracy for various beat morphologies than other traditional
real-time methods developed before 1990.7 In 1986, by optimiz-
ing parameter selection and threshold estimation, Hamilton and
Tompkins8 improved the original Pan-Tompkins algorithm. In the
past two decades, the Hamilton-Tompkins algorithm has been
also widely used for HRV (Heart Rate Variability) analysis for a
variety of applications such as detection of OSAS (Obstructive
Sleep Apnea Syndrome) in children,9 compression for optimal
transmission and storage for ECG analysis,10 etc. Because their
focus on mostly high-quality ECG database and not on the low-
quality ECG database, the application of Pan-Tompkins based
algorithms can be problematic for the low signal quality ECG
waveforms. The quality of signals monitored by portable devices
becomes an important concern as mobile healthcare rises. It may
also challenge the current signal processing algorithms.
Telehealth systems are experiencing increased adoption, not

only due to the convenience of being able to monitor health
within the home, but also due to the potential significantly
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reduced costs to users and health care providers alike. However,
a decrease in signal quality is a fundamental problem associated
with measuring a patient’s ECG in a telehealth environment. The
ECG signals recorded from the dynamic and mobile equipment
are inevitably noise-corrupted, consisting of more uncontrollable
aspects, such as physiology, pathology, and artificial effects. The
performance of the Pan-Tompkins based algorithms were not sys-
tematically evaluated for these signals. Thus, we tested the per-
formance of three Pan-Tompkins based algorithms on both high
and low quality ECG signals in this study.

2. METHODS
2.1. Data
Two hundred ECG recordings from the 2014 PhysioNet/CinC
Challenge11�12 were used in this study. These recordings were
from two databases: 100 recordings (named 100∼199, sampled at
250 Hz) from the training set, and another 100 recordings (sam-
pled at 360 Hz) from the augmented training set. Each recording
was 10 min long. The signal quality of ECG signals in the train-
ing set were always good, whereas the quality of the ECG signals
in the augmented training set were very poor. Thus, the training
set was used as a high-quality ECG database and the augmented
training set was used as a low-quality ECG database during this
study. All ECG recordings had the manually annotated QRS com-
plex locations and these locations were used as the references for
algorithm evaluations.13 The data has a standard WFDB format
and they were read by the Matlab software through ‘rddata.m’,
which is a standard WFDB function provided in the PhysioNet.

2.2. Pan-Tompkins Based QRS Detection Algorithms
The original Pan-Tompkins algorithm4 is one of the most widely
used QRS detectors.1�6�14 Figure 1 shows its flow diagram. First,
the Butterworth band-pass filter was used to filter the ECG sig-
nal at a frequency range of 5–15 Hz. After filtering, the signal
was differentiated by a five-point derivative and squared point
by point. Then, the squared ECG signal was transferred into an
integrated energy signal. Two sets of adaptive thresholds were
employed to detect the QRS peaks in both filtered ECG signal
and integrated energy signal. Then, an optimization step was per-
formed to re-detect the peaks. The RR interval less than 360 ms
was first rechecked to see whether it was a T wave. If the RR
interval was larger than the RR interval missed limit (RRML),
the searching back program was performed to find the missed
beats. Then, the thresholds automatically adapt to the character-
istics of the signal because they were based upon the running
signal and noise peak levels that were detected in the ongoing
processed signals. For the purposes of calculating the signal and
noise peak levels in this algorithm, the iterative peak level esti-
mator was used. A newly detected peak must first be classified
as a noise or signal peak. Equation (1) was used to determine the
detection threshold:

DT =NPL+TC× �QRSPL−NPL� (1)

where DT is the detection threshold, NPL is the noise peak level,
TC is the threshold coefficient, and QRSPL is the QRS signal
peak level. In this algorithm, TC is 0.25.

Then a 200 ms refractory blanking technology was applied to
eliminate the possibility of a false detection. Finally, the peak
points through all detections were determined as QRS positions.
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Fig. 1. The flow diagram for the original Pan-Tompkins method (marked
pink), the modified Pan-Tompkins method with mean estimation (marked pur-
ple) and the modified Pan-Tompkins method with median estimation (marked
green).

In 1986, Hamilton and Tompkins improved the Pan-Tompkins
method by optimizing parameter selection and threshold
estimation.7 Form this literature, we proposed two improved
versions of Pan-Tompkins based method, and named them as
modified Pan-Tompkins method with median estimation and mod-
ified Pan-Tompkins method with mean estimation, respectively.
Figure 1 and Table I both show the differences between these
three methods. The differences can be summarized in six aspects:
(1) Integration moving-window width: 150 ms in the original
Pan-Tompkins method, whereas 80 ms in the two modified Pan-
Tompkins methods.
(2) QRS peak level estimation method: iteration in the original
Pan-Tompkins method and using mean and median of the eight
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Table I. Summary of the differences among the three methods.

The The modified The modified
original Pan-Tompkins Pan-Tompkins

Pan-Tompkins method with method with
Difference method mean estimation median estimation

Integration
window width

150 ms 80 ms 80 ms

Peak level
estimation

Iteration Mean of the eight
most-recent beats

Median of the eight
most-recent beats

Threshold I NPL+0.25
(QRSPL-NPL)

NPL+0.189
(QRSPL-NPL)

NPL+0.189
(QRSPL-NPL)

Threshold II 0.5 of Threshold I 0.3 of Threshold I 0.3 of Threshold I
RR interval

prediction
Mean of the eight

most-recent beats
Mean of the eight

most-recent beats
Mean of the eight

most-recent beats
RR interval

missed limit
166% of RR interval 150% of RR interval 150% of RR interval

most-recent beats in the two modified Pan-Tompkins methods
respectively.
(3) Noisy peak level estimation method: iteration in the original
Pan-Tompkins method and using mean and median of the eight
most-recent beats in the two modified Pan-Tompkins methods
respectively.
(4) Threshold coefficient: 0.25 and 0.189 for the original Pan-
Tompkins method and the two modified Pan-Tompkins methods
respectively.
(5) Search back threshold: 0.5 and 0.3 times of the detection
threshold for the original Pan-Tompkins methods and the two
modified Pan-Tompkins methods, respectively.
(6) RR interval missed limit: 166% and 150% of the average
RR interval for the original Pan-Tompkins methods and the two
modified Pan-Tompkins methods, respectively.

2.3. Evaluation Methods
As suggested from the 2014 PhysioNet/CinC Challenge,12 four
statistics were used to measure the performance of the three Pan-
Tompkins based QRS detection methods:

Se_ave= 1
n

n∑

i=1

TPi

TPi+FNi

×100% (2)

PPV_ave = 1
n

∑
_i = 1n

TPi

TPi+FPi

×100% (3)

Se_gro= TP
TP+FN

×100% (4)

PPV_gro= TP
TP+FP

×100% (5)

where TP, FP, and FN denote true positives (correctly detected
beats), false positives (erroneously detected beats outside of the

tolerance window, or additional detected beats within a toler-
ance window), and false negatives (undetected reference beats),
respectively. TPi, FPi and FNi denote the statistics for the i-
th recording,12 Se_ave and PPV_ave represent the average sen-
sitivity and positive predictivity for all recordings in the high
and low-quality databases, respectively, and Se_gro and PPV_gro
represent the corresponding gross sensitivity and positive predic-
tivity. Accuracy (Acc) was used as the performance criterion for
the methods and was defined as:

Acc= 1

4
�Se_ave+PPV_ave+Se_gro+PPV_gro� (6)

Figure 2 shows an example of TP (marked as blue ‘o’); FN
(green ‘+’) and FP (pink ‘o’) detections form the recording of
41,778 in the low-quality database. A red ‘+’ indicated reference
QRS annotations (R_ref). The tolerance time window of 50 ms is
denoted by the vertical gray areas to confirm the TP detections.
If the detected QRS location is within the current vertical grey
area, it is considered to be a TP detection. If the detected QRS
location is out the current vertical grey area, it is considered to be
an FP detection. If there is no detected QRS location within the
current vertical grey area, it is considered to be an FN detection.
If more than one detected QRS locations exists within the current
vertical grey area, one is considered to be a TP detection and the
others are considered to be FP detections.

3. RESULTS
Tables II and III show the detection results of the three
QRS detection methods on the high/low-quality ECG databases,
respectively. As shown in Table II, all three QRS detection algo-
rithms had high Acc results for the high-quality ECG signals
(>99%). However, as shown in Table III, the detection accura-
cies decrease significantly for the low-quality ECG signals. The
modified Pan-Tompkins method with median estimation reported
the highest Acc result at 76.03%, and the original Pan-Tompkins
method gave the lowest Acc result of 74.49%.
Tables II and III also show the average time costs of the three

methods by analyzing 10 s ECG signals. In this study, all of
the methods were implemented in MATLAB 2014a (The Math-
Works, Inc., Natick, MA, USA) on Intel TM i5 CPU 3.30 GHz.
As shown, the original Pan-Tompkins method had the highest
computational efficiency.

4. DISCUSSION
As summarized in both Figure 1 and Table I, the parameter
and threshold settings were the differences noticeable among
each of the three methods. These three algorithms had almost

Fig. 2. Example of TP (marked as blue ‘o’), FN (green ‘+’) and FP (pink ‘o’) detections from the recording 41,778 in the low-quality database. Red ‘+’
indicated reference QRS annotations (R_ref). The tolerance time window of 50 ms is denoted by the vertical gray areas.
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Table II. Detection results of the three algorithms on the high-quality ECG databases.

Method No. TP No. FN No. FP Se_ave (%) PPV_ave (%) Se_gro (%) PPV_gro (%) Acc (%) Time (ms)

The original Pan-Tompkins
method

72,337 76 126 99.91 99.84 99.90 99.83 99.87 5.14

The modified Pan-Tompkins
method with mean
estimation

72,350 63 143 99.92 99.81 99.91 99.80 99.86 5.82

The modified Pan-Tompkins
method with median
estimation

72,355 58 152 99.93 99.80 99.92 99.79 99.86 5.92

Table III. Detection results of the three algorithms on the low-quality ECG databases.

Method No. TP No. FN No. FP Se_ave (%) PPV_ave (%) Se_gro (%) PPV_gro (%) Acc (%) Time (ms)

The original Pan-Tompkins
method

57,540 21,078 18,989 73.17 76.41 73.19 75.19 74.49 5.67

The modified Pan-Tompkins
method with mean
estimation

59,679 18,939 20,491 75.91 75.86 75.91 74.44 75.53 6.58

The modified Pan-Tompkins
method with median
estimation

61,289 17,329 23,296 78.63 75.08 77.96 72.46 76.03 6.64

similar detection accuracies for the high-quality ECG signals
(see Table II). However, the detection accuracies varied signif-
icantly for the low-quality ECG signals (see Table III). The
modified Pan-Tompkins method with median estimation reported
the best Acc result at 76.03% and the original Pan-Tompkins
method gave the worst Acc results at 74.49%. The modified Pan-
Tompkins method with median estimation also gave the largest
TP detections at 61,289, and FP detections at 23,296. The orig-
inal Pan-Tompkins method gave the smallest TP detections at
57,540 and FP detections at 18,989. The detection accuracies
could be improved by the improved parameter and threshold set-
tings in the modified Pan-Tompkins methods.

The peak level estimation of the original Pan-Tompkins
method was iteration. The sudden amplitude greatly affected this
estimator. Due to the adaptation to large amplitude peaks, the
thresholds increased and may never decrease again, resulting in
no further peaks being detected and no further threshold adap-
tation. Figure 3 illustrates an example from recording 2,714 in
low-quality ECG database. In this episode, there were several

QRS complex with sudden amplitude changes of some ectopic
ventricle beats, such as the 4th, 5th, 7th, and 15th beats. There
were only four detected beats for original Pan-Tompkins method,
while there were 12 and 15 detected beats for the two modified
Pan-Tompkins methods, respectively.

The sudden amplitude change also affected the modified Pan-
Tompkins method with mean estimation. However, it had a
30% search back threshold of detection rather than a 50%,
which could improve this situation. Therefore, there were 11 TP
detections in the modified Pan-Tompkins method with mean
estimation, while there were four TP detections in the origi-
nal Pan-Tompkins method. However, the modified Pan-Tompkins
method with mean estimation was also influenced if there is a
strong sudden change in amplitude. Figure 4 shows an exam-
ple from recording 1,683 in the low-quality ECG database. In
this episode, there were four TP and eight FP detections in
the original Pan-Tompkins method and modified Pan-Tompkins
method with mean estimation, while there were 11 TP and 10 FP
detections in the modified Pan-Tompkins method with median

Fig. 3. Example from recording 2,714 in the low-quality ECG database: The original Pan-Tompkins method (4 TP and 0 FP, marked as pink asterisks);
the modified Pan-Tompkins method with mean estimation (11 TP and 1 FP, marked as purple asterisks); the modified Pan-Tompkins method with median
estimation (13 TP and 2 FP, marked as green asterisks). The annotations points of reference were marked as red crosses.
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Fig. 4. Example from recording 1,683 in the Low-quality ECG database: The original Pan-Tompkins method (4 TP and 8 FP, marked as pink asterisks); the
modified Pan-Tompkins method with mean estimation (4 TP and 8 FP, marked as purple asterisks); the modified Pan-Tompkins method with median estimation
(11 TP and 10 FP, marked as green asterisks). The annotations points of reference were marked as red crosses.

estimation. In this episode, the sudden amplitude change also
influenced the modified Pan-Tompkins method with mean esti-
mation. The modified Pan-Tompkins method with median esti-
mation employed the median value of the eight most-recent beats
as peak level, which could reject the influence of the sudden
amplitude change.

5. CONCLUSION
In this study, the performance of the three Pan-Tompkins based
QRS complex detection algorithms were systematically com-
pared on both high and low-quality ECG databases from the 2014
PhysioNet/CinC Challenge.

These three QRS detection algorithms primarily had the same
high detection accuracies for the high-quality ECG signals,
whereas the output was relatively different and the low-quality
ECG signals had low accuracy. The Pan-Tompkins based method
with median peak level estimation reported the best Acc results
at 76.03% and the method with iteration peak level estimation
gave the worst Acc results at 74.49%. It was discovered that
the median peak level estimation was better to avoid the effect
of the sudden amplitude changes. In addition, the original Pan-
Tompkins based method had the higher computational efficiency.

In conclusion, we have systematically studied the performance
of three Pan-Tompkins based QRS complex detection algorithms
and tested their noise response. The conclusions derived by this
work could potentially provide integral reference for the reason-
able use of those methods.
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