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Abstract
Objective: Schizophrenia has been associated with changes in heart rate (HR) and 
physical activity measures. However, the relationship between analysis window 
length and classifier accuracy using these features has yet to be quantified. 
Approach: Here we used objective HR and activity data to classify contiguous days 
of data as belonging to a schizophrenia patient or a healthy control. HR and physical 
activity recordings were made on 12 medicated subjects with schizophrenia and 
12 healthy controls. Features derived from these data included classical statistical 
characteristics, rest-activity metrics, transfer entropy, and multiscale fuzzy entropy. 
We varied the analysis window length from two to eight days, and selected features 
via minimal-redundancy-maximal-relevance. A support vector machine was 
trained to classify schizophrenia from control windows on a daily basis. Model 
performance was assessed via subject-wise leave-one-out-crossfold-validation. 
Main results: An analysis window length of eight days resulted in an area under 
a receiver operating characteristic curve (AUC) of 0.96. Reducing the analysis 
window length to two days only lowered the AUC to 0.91. The type of most 
predictive features varied with analysis window length. Significance: Our results 
suggest continuous tracking of subjects with schizophrenia over short time scales 
may be sufficient to estimate illness severity on a daily basis.

Keywords: schizophrenia, machine learning, support vector machine, 
mhealth, mobile health, heart rate, entropy
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1. Introduction

Schizophrenia is a chronic psychiatric disease and global health problem with a lifetime prev-
alence of 4.0/1000 (Saha et al 2005). It is among the most disabling and economically cata-
strophic disorders; the overall cost of schizophrenia to the US in 2002 was estimated at 62.7B 
due to clinical care, medication, and unemployment (Wu et al 2005). Onset usually occurs in 
early adult years. Schizophrenia is characterized by delusions, hallucinations, disorganization 
of speech and behavior, and a higher rate of co-occurring psychiatric disorders. Depression 
prevalence is 25%, which is higher than the rate in the general population (Buckley et  al 
2009), and lifetime risk of suicide is 5% (Hor and Taylor 2010, Kahn et al 2015).

Schizophrenia is diagnosed via clinical interview, in which the psychiatrist asks the patient 
to self-report characteristic symptoms, and assesses if social and/or occupational dysfunc-
tion has occurred for at least six months. Unfortunately schizophrenia impairs insight which 
hinders the accuracy of self-reporting. Even if a patient is diagnosed and treated, medication 
adherence is poor and seriously consequential (Byerly et al 2007).

Differences in power spectral and/or entropy measures of both activity and heart rate (HR) 
have been reported in schizophrenia patients versus healthy controls (Bär et al 2008, Hauge 
et al 2011, Wulff et al 2012). These sophisticated measures include frequency components 
and information theory complexity, contain more information than classical statistical char-
acteristics such as the mean of a signal, and reflect changes in the autonomic nervous system 
(ANS).

Previously we reported differences in ANS function, sleep patterns, and locomotor activity 
in subjects with schizophrenia versus healthy controls. We accurately distinguished schizo-
phrenia patients from controls by training a machine learning algorithm with features derived 
from HR and locomotor activity selected from the highest-quality ten days of data recorded 
from a body worn patch (Osipov et al 2015). Using both HR and activity features improved 
classification accuracy compared to using features from just one data type. However, the opti-
mal timescale of data measurement necessary to accurately estimate the severity of schiz-
ophrenic symptoms remains unknown. Understanding this could contribute to the passive, 
objective, and near real-time monitoring of schizophrenia patients to detect early signs of 
illness relapse, medication adherence, or treatment efficacy.

Here we vary the analysis window length of recorded HR and locomotor activity data, 
extract features from these data, train a support vector machine to distinguish if a patient has 
a diagnosis of schizophrenia or is a healthy control, and evaluate classifier performance for 
differing analysis window lengths.

2. Methods

2.1. Participants and data collection

16 outpatient subjects diagnosed with schizophrenia but in symptomatic remission, and 19 
healthy control volunteers without a history of mental disorders were recruited for the study. 
All subjects were unemployed. Although the prevalence of schizophrenia is only 4/1000 in 
the general population, this balanced cohort was appropriate for our study aim: to develop 
a method for estimating illness severity in subjects with an established diagnosis of schizo-
phrenia. Age and gender did not significantly differ among the two groups, as assessed via 
a two-sided Student’s t-test and Fisher’s exact test, respectively. Subjects diagnosed with 
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schizophrenia were taking anti-psychotic medications including Olanzapine, Risperidone, 
Aripiprazole, Perphenazine, Fluphenazine, Ziprasidone, Haloperidol, and Quetiapine.

HR and locomotor activity were monitored for 3–4 weeks using a disposable adhesive 
patch sensor worn on the chest and manufactured by Proteus Biomedical (Redwood City, 
CA). Electrocardiogram (ECG)-derived HR data were collected every 10 min by calculating 
mean HR over 15 s intervals. Accelerometry-derived locomotor activity data were collected 
every 5 min by calculating mean acceleration over 15 s intervals. Data were transmitted to a 
mobile phone via Bluetooth and further uploaded to a central server for processing.

2.2. Data pre-processing

Matlab R2016a (Mathworks, Natick, MA) was used to analyze HR (beats per minute, or 
BPM) and locomotor activity (normalized units ∈ [0, 1]) time series data, which were col-
lected with variable recording rates and lengths. Data collected at an insufficient sampling 
rate—after an interval exceeding 1.5× the sampling period, which equals 15 min for HR and 
7.5 min for activity—were discarded. Additionally, HR values lower than 20 BPM or higher 
than 160 BPM were labeled as low-quality and removed. A day was considered to have suf-
ficient data if it contained both (a) at least 50 HR data points and (b) at least 50 locomotor 
activity data points. Subjects with fewer than ten days of sufficient data were removed.

Four subjects with schizophrenia lacked sufficient amounts of data, and twelve subjects 
with schizophrenia possessed sufficient amounts of data. Prior to analysis, excess control sub-
jects were removed at random to ensure both groups had 12 patients (24 subjects total). HR 
data were re-sampled to 10-min intervals, and activity data were re-sampled to 5-min inter-
vals, both via linear interpolation.

Data pre-processing, feature extraction, classifier training, and model evaluation was per-
formed for sliding contiguous windows of length of w days where w ∈ [2, 4, 6, 8]. Days with 
at least 50 HR and at least 50 activity data were considered viable. Days with fewer data were 
skipped. The ith analysis window started at day di and ended at day di  +  w  −  1 where di is the 
ith day of data. i started at 1 and incremented to the last day of viable data for a subject. If a 
day was not viable, i.e. lacked sufficient data, no features were extracted, schizophrenia status 
was not estimated, and the algorithm incremented to the next day.

2.3. Statistical characteristics

HR and locomotor activity are affected in schizophrenia so we calculated classical statistical 
characteristics of HR and activity, including mean, median, mode, standard deviation (σ) and 
interquartile range (IQR) (Bär et al 2008, Hauge et al 2011, Rachow et al 2011).

2.4. Rest-activity characteristics

Circadian rhythm disruption has been shown to play a significant role in schizophrenia (Wulff 
et al 2012). We calculated rest-activity characteristics of HR and activity, including mean level 
during the least active five hours (L5), mean level during the most active ten hours (M10), 
relative amplitude (RA, equation (1)), interday stability (IS, equation (2)) and intraday vari-
ability (IV, equation (3)) (Witting et al 1990, Van Someren et al 1999):

RA =
M10 − L5
M10 + L5

 (1)
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IS =

n
p∑

h=1
(x̄h − x̄)2

p
n∑

i=1
(xi − x̄)2

 (2)

IV =

n
n∑

i=2
(xi − xi−1)

2

(n − 1)
n∑

i=1
(xi − x̄)2

 (3)

where n is the total number of data, p is the number of data per day, xh are hourly means, x is 
the mean of all data, and xi represents individual data points.

2.5. Behavioral features

The same features were extracted as described in our previous work, including basic statistical 
characteristics, rest-activity characteristics, and multiscale transfer entropy (MTE) between 
HR and activity data. 36 total features were calculated, which are described in Osipov et al 
(2015). However, we calculated multiscale fuzzy entropy, a novel metric of sequence com-
plexity, instead of multiscale entropy (MSE).

2.5.1. Multiscale fuzzy entropy. Activity disorganization is one of the diagnostic criteria for 
schizophrenia (Kahn et al 2015). Hauge et al (2011) indicated that entropy can be used to esti-
mate such disorganization. Moreover, our group has demonstrated that MSE applied to actig-
raphy provided information on disorganization in schizophrenic patients (Osipov et al 2015). 
MSE is the calculation of sample entropy (SampEn) H for a range of time scales of original 
signal (Richman and Moorman 2000, Costa et al 2002). This metric of signal complexity is 
derived from the negative logarithm of the conditional probability of the appearance of longer 
patterns in a signal, considering the presence of a shorter pattern:

H(m, r, N) = − ln
Am(r)
Bm(r) (4)

where m is the template length, r is the radius of similarity or distance threshold between pat-
terns, Am(r) is a probability of matching a template of length m  +  1, Bm(r) is the probability 
of matching a template of length m, and N is the number of elements in the time series. Two 
patterns of length m are considered similar if each point of a pattern in one part of the signal is 
within a normalized distance r from the respective point in the other part of the signal.

To vary time scales of data used to calculate entropy, the original signal was coarse-grained 
to a lower temporal sampling frequency (i.e. by half for each coarse-graining). Coarse-grained 
time series were constructed by averaging the data points within non-overlapping windows 
of increasing length τ. For the τth time scale, each element of the coarse-grained time series, 

y(τ)j , is given by:

y(τ)j =
1
τ

jτ∑
i=( j−1)τ+1

xi (5)
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where τ represents the scale factor and 1 � j � N/τ . The length of each coarse-grained time 
series is N/τ . The first time scale corresponds to the 0th coarse graining and is just the origi-
nal time series.

Although MSE can differ by illness status, SampEn can change significantly and/or non-
monotonically with small changes in parameter values and thus exhibits poor statistical sta-
bility. Additionally, SampEn only accounts for similar patterns with similar amplitudes, not 
similar patterns with different amplitudes. These shortcomings are addressed by the recently 
proposed fuzzy entropy, Hfuzzy (Lee et al 2001, Liu et al 2013, Li et al 2013, 2014).

To calculate Hfuzzy, the binary Heaviside classifier in SampEn is replaced with a continuous 
membership degree between 0 and 1, based on Zadeh’s concepts of fuzzy set theory (Chen 
et al 2007). Hfuzzy accounts for both local and global sequence regularity and is more robust 
to noise than SampEn. Multiscale fuzzy entropy (MFE) is determined by calculating Hfuzzy 
for coarse-graining a time series several times, in the same fashion as MSE described above.

Prior work indicates that lower scales of MSE provide the best features for training a clas-
sifier to distinguish schizophrenic from healthy subjects (Osipov et al 2015). Therefore we 
evaluated MSE of HR and activity data for the first four time scales (in the coarse-graining 
sense, not window length). Furthermore, a classifier trained on MFE of heart rate data from 
patients with heart failure outperformed a classifier trained on MSE of the same data (Liu et al 
2013). Thus, we calculated MFE of HR and activity data for the first four time scales, using 
parameter values mHR = 3, mact = 2, rHR = 0.1, and ract = 0.15.

2.5.2. Feature selection. In order to reduce the number of features used and minimize over-
fitting, a feature selection approach was necessary. Features were z-scored, discretized, and 
ranked via minimum redundancy maximum relevance (mRMR) criteria (Peng et al 2005). 
This approach simultaneously minimizes mutual information between individual features x 
in a feature set S:

min R(S), R =
1
|S|2

∑
xi,xj∈S

I(xi; xj) (6)

and maximizes mutual information between features x and classes (sometimes referred to as 
labels or targets) c:

max D(S, c), D =
1
|S|

∑
xi∈S

I(xi; c) (7)

where I(x;y) is the mutual information between variables x and y, and p(x), p( y ), and p(x, y) 
are probability densities of these variables:

I(x; y) =
∫

p(x, y) log
p(x, y)

p(x) p(y)
dxdy. (8)

These two constraints for D and R are combined into one expression φ(D, R) which is 
optimized as follows:

max φ(D, R) = D − R. (9)

The mRMR algorithm ordered features by values of φ from highest to lowest. Hereafter, 
‘most predictive’ refers to the subset of features with the highest values of φ.

Statistical characteristics, rest-activity characteristics, MTE, and MFE were calculated and 
36 features total were ranked via mRMR. The most predictive i features (where i ∈ 1, 2, ..., m) 
were used to train a machine learning algorithm.
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2.6. Classification of schizophrenia status among subjects

Subjects were classified as either having a diagnosis of schizophrenia or being healthy, using 
libsvm, an open-source support vector machine (SVM) library (Chang and Lin 2011). The 
two–dimensional matrix of features consisted of W windows by m features, and the one-
dimensional array of labels consisted of W binary labels. Each analysis window was labeled 
as 1 if belonging to a schizophrenia patient, or 0 if belonging to a healthy control. A Gaussian 
radial basis function kernel with γ  =  0.0312 was selected based on previous work (Osipov 
et al 2015).

The most predictive features identified via mRMR were used to train the SVM, which 
output probability estimates of a subject being labeled as schizophrenic, P(SZ), rather than 
healthy. Classifier performance was assessed via subject-wise leave-one-out crossfold val-
idation (LOOCV; given N patients, N  −  1 patients are used to train the classifier and the 
remaining patient is used as the test set), and various attributes of classifier performance was 
calculated, including area under the receiver operating characteristic curve (AUC), accuracy, 
sensitivity, specificity, positive predictive value, and negative predictive value. The number 
of most predictive features (number of features maximizing the AUC) was also determined.

Pre-processing, feature extraction, and classifier assessment was performed for analysis 
window lengths of two, four, six, and eight days. The SVM was trained using windows, not 
on individual days or subjects.

3. Results

The number of features resulting in the maximum AUC, and the maximum AUC value itself, 
both differed with analysis window length (figure 1). With an analysis window length of two 
days, the model achieved a maximum AUC of 0.91 using five most predictive features. With 
an analysis window length of eight days, the model achieved a maximum AUC of 0.96 using 
20 most predictive features. Table  1 lists other classifier performance metrics for varying 
window lengths.

Box plots of the most predictive features (i.e. the combination of features which maximized 
the training AUC) for two-day and eight-day analysis windows are shown in figures 2 and 3 
respectively. For two-day analysis windows, the three most predictive features in order of 
more to less predictive are (1) the standard deviation of activity (σact), 2) the multiscale fuzzy 
entropy of heart rate at the first time scale (MFEHR,1), and 3) the mode of activity (Moact).

For eight-day analysis windows the eleven most predictive features in order of more to less 
predictive are 1) MFEHR,1, 2) IQRact, 3) Moact, 4) the multiscale transfer entropy from activity 
to HR at the first time scale (coarse-graining) (MTEact→HR,1), 5) σact, 6) MFEact,4, 7) MFEHR,4, 
8) the intraday variability of activity (IVact), 9) MTEact→HR,2, 10) MFEact,2, and 11) the relative 
amplitude of activity (RAact).

Probability density estimates of classifier output (estimated probability of a window of data 
belonging to a subject with schizophrenia) for schizophrenia patients distinctly differed from 
those of control subjects. This difference was large for both two-day (figure 4(a)) and eight-
day analysis windows (figure 4(b)).

ROC curves showed a positive correlation between analysis window length and AUC  
(figure 5). AUC values ranged from 0.91 for two-day windows to 0.96 for eight-day windows. 
Increasing window length increased most metrics of classifier performance (table 1) with only 
a few exceptions. Increasing window length from two to four days reduced sensitivity from 
0.89 to 0.85 and NPV from 0.79 to 0.76. Increasing analysis window length from four to six 
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days reduced specificity from 0.98 to 0.94, and PPV from 0.98 to 0.97. Increasing window 
length from six to eight days reduced NPV from 0.77 to 0.76.

To assess the relative contribution of each type of feature (i.e. heart rate, locomotor activ-
ity, or both combined) we compared classifier AUC versus feature type for analysis window 
lengths of two or eight days. With an analysis window length of two days, features from HR 
resulted in a classifier AUC of 0.80, features from locomotor activity resulted in a classifier 
AUC of 0.85, and features from both HR and locomotor activity resulted in a classifier AUC of 
0.92 (table 2). These results demonstrate an improvement classifier performance when using 
features from both HR and locomotor activity data, compared to using features from either 
category alone.

HR and activity data, estimated P(SZ), optimal classifier thresholds, and data quantity were 
visualized against 24 h intervals into the study for a representative subject with schizophrenia 
(figure 6(a)) and a representative healthy control subject (figure 6(b)).

0 5 10 15 20 25 30 35
# most predictive features used

0.75

0.80

0.85

0.90

0.95

1.00

A
U

C

AUC vs. # most predictive features used

2-day window
4-day window
6-day window
8-day window

Figure 1. AUC versus number of most predictive features, selected out of 36 total 
features via mRMR, used to train the SVM. The blue line represents two-day analysis 
windows and the red line represents eight-day analysis windows. The maximum AUC 
for two-day analysis windows is 0.92 using the five most predictive features, and the 
maximum AUC for eight-day analysis windows is 0.96 using the 20 most predictive 
features.

Table 1. Classifier performance metrics versus window length, using both HR and 
activity features. PPV indicates positive predictive value and NPV indicates negative 
predictive value.

Metric

Window length (days)

2 4 6 8

AUC 0.91 0.94 0.95 0.96
Accuracy 0.85 0.89 0.89 0.91
Sensitivity 0.89 0.85 0.87 0.87
Specificity 0.76 0.98 0.94 0.99
PPV 0.87 0.98 0.97 0.99
NPV 0.79 0.76 0.77 0.76
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4. Discussion

We built on previous work using features derived from HR and activity to classify medicated 
schizophrenia patients from healthy controls. Here we evaluated the relationship between 
analysis window length and classifier accuracy.

Using two-day analysis windows, a maximum AUC of 0.91 was achieved using the three 
most predictive features. Using eight-day analysis windows, a maximum AUC of 0.96 was 
achieved using the 11 most predictive features (figure 1). Both AUCs sharply increased as 
initial features were added. For the two-day model, adding more than three features steadily 
lowered the AUC, aside from a slight rise in classifier performance when moving from 16 to 
17 features. On the other hand, for 4-, 6-, and 8-day models the AUC stayed close to 0.90 for 
a wide range of 10 to 25 features. This may be due to the fact that, for the two-day model, the 
number of data points is low enough that higher-dimensional models begin to fit more noise.

The ranking of features via mRMR criteria depended on analysis window length  
(figures 2 and 3). The most predictive feature from two-day analysis windows was σact with 
a median  ±  IQR of 0.08 ± 0.05 units for the schizophrenic group compared to 0.13 ± 0.04 
units for the control group. This difference was statistically significant (P  <  0.05, Wilcoxon 
rank-sum test), contrasting with results from Hauge et al (2011), which also reported signifi-
cantly lower levels of mean activity in schizophrenic patients. Our algorithm did not identify 
mean activity as a predictive feature. However, that work reported the evaluation of long-term 
patients from an open ward, whereas our study evaluated outpatients in relative symptomatic 
remission. Illness severity and behavioral markers may have differed.

The 2th most predictive feature for two-day analysis windows was MFEHR,1, with a 
median  ±  IQR of 0.95 ± 0.50 in schizophrenic patients and 1.30 ± 0.40 in controls. The 3th 
most predictive feature for two-day analysis windows was Moact, with a median  ±  IQR of 
0.013 ± 0.002 in schizophrenic patients and 0.012 ± 0.001 in controls. All three most pre-
dictive features for two-day analysis windows differed significantly by schizophrenia status 
(P  <  0.05, Wilcoxon rank-sum test).

The most predictive feature for eight-day windows was MFEHR,1, with a median  ±  IQR 
of 0.89 ± 0.46 for schizophrenic patients and 1.24 ± 0.19 for controls (3). This difference 
was consistent and statistically significant for both two- and eight-day analysis windows 
(P  <  0.05, Wilcoxon rank-sum test). Other predictive features for eight-day analysis windows 

SZ Controls
0.00

0.05

0.10

0.15

0.20

SZ Controls
0.60

0.80

1.00

1.20

SZ Controls
0.010

0.011

0.012

0.013

0.014

Figure 2. Box plots of most predictive features selected via mRMR using two-day 
analysis windows. The SZ label on the x-axis indicates features from schizophrenia 
patients. These three features in combination maximized the training AUC. The red + 
indicates the mean, the middle horizontal red line indicates the median, the blue box 
denotes the interquartile range (IQR) flanked by the 25th and 75th percentiles, and the 
vertical lines outside of the box indicate the 9th and 91th percentiles. The median value 
of every feature significantly differed by schizophrenia status, with P  <  0.05 calculated 
via two-sided Wilcoxon rank-sum test.
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represent the spread of the distribution of activity, such as IQRact and σact. We note skewness, 
kurtosis, mean, or median of activity were not predictive features. Furthermore, aside from 
MFEHR,1, no other HR statistics were predictive.

MTEact→HR,i denotes the transfer entropy, or amount of uncertainty reduced in future val-
ues of HR by knowing the past values of activity given past values of HR, at a time scale i. 
For two-day analysis windows, MTEact→HR,i was not a predictive feature for any time scale. 
However, when using eight-day analysis windows, MTEact→HR,i was a predictive feature for 
i  =  1 and i  =  2. When using two-day analysis windows, MTEact→HR,i is still predictive; how-
ever, it is not as predictive as the most predictive three features described above. These results 
suggest activity-driven changes in HR become more predictive at longer time scales.

We used the mRMR framework to select features on the basis of maximizing predictiv-
ity (relevance), and minimizing collinearity (redundancy) (Peng et al 2005). Although our 
most-predictive features were all separable in a univariate sense, features should be selected 
by predictivity rather than significance for classification tasks (Lo et al 2015). Features may 
be inseparable in a univariate sense but strongly separable in higher dimensions. On the other 
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Figure 3. Box plots of most predictive features selected via mRMR using eight-day 
analysis windows. The SZ label on the x-axis indicates features from schizophrenia 
patients. These eleven features in combination maximized the training AUC. The red +  
indicates the mean, the middle horizontal red line indicates the median, the blue box 
denotes the interquartile range (IQR) flanked by the 25th and 75th percentiles, and the 
vertical lines outside of the box indicate the 9th and 91th percentiles. The median value 
of every feature significantly differed by schizophrenia status, with P  <  0.05 calculated 
via two-sided Wilcoxon rank-sum test.
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Figure 4. Probability density estimates of classifier output (estimated probability of a 
window of data belonging to a subject with schizophrenia) using (a) two-day and (b) 
eight-day analysis windows. Classifier output is on the x-axis, and proportion is on the 
y-axis; all y-values for a class sum to unity. Output from schizophrenic subjects is in red 
and control subjects in in blue.
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Figure 5. Receiver operating characteristic (ROC) curves vary with analysis window 
length. Blue, red, yellow and purple denote two, four, six, and eight-day windows 
respectively. The y-axis is the true positive rate, or sensitivity. The x-axis is the false 
positive rate, or 1 − specificity.

Table 2. Area under the ROC curve (AUC) versus window length and feature type used 
to train support vector machine. AUCs calculated via leave-one-out-cross-validation 
(LOOCV).

Feature type(s)

Window length (days)

2 8

Heart rate (HR) 0.84 0.90
Activity 0.86 0.89
HR and activity 0.91 0.96
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hand, a feature may significantly differ between classes in a univariate or even multivariate 
sense, but may still not contribute predictive accuracy to a model.

With two-day analysis windows, the SVM classifier produced grossly distinct distributions 
of output for schizophrenia patients versus healthy controls, demonstrating excellent classifier 
performance (figure 4(a)). However, a few analysis windows were mislabeled. Using eight-
day analysis windows resulted in similar excellent classifier performance evidenced by large 
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Figure 6. HR data (top row), activity data (second row), classifier output (probability 
of schizophrenia, or P(SZ); third row), and data quantity versus time (bottom row) for a  
(a) schizophrenia patient and a (b) healthy control subject. Heart rate is in beats per 
minute (BPM), activity is in normalized units (N.U.), P(SZ) is a probability, and data 
quantity is in raw counts. P(SZ) for a window length of two days is shown by the 
red  +’s. The classifier threshold for a two-day window is P(SZ)  =  0.45, is shown by 
the red solid line. P(SZ) for a window length of eight days is shown by the blue circles. 
The classifier threshold for a window length of eight days, P(SZ)  =  0.73, is shown by 
the blue dashed line. On the data quantity plot, the minimum data quantity (at least 50 
HR and at least 50 activity data) required to make a estimate of P(SZ) on a given day is 
shown by the black dotted line.
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separability of classifier output between windows of data from schizophrenia patients and 
healthy controls (figure 4(b)).

AUC increased with analysis window length, from 0.91 for two days, up to 0.96 for eight 
days (figure 5). In our previous work, an SVM was trained using the ten days missing the least 
data from each subject, and achieved an AUC of 0.99 (Osipov et al 2015). In this work, classi-
fier performance was slightly lower because we did not pick ‘best’ days among several weeks 
of data. Rather, we slid an analysis window through all days from all patients and trained a 
classifier on individual windows. This approach better represents a realistic scenario in which 
only a few days of patient data are obtained.

We also assessed how analysis window length affects the sensitivity, specificity, positive 
predictive value, negative predict value, and accuracy of the classifier for different window 
lengths (table 1). Specificity exceeded 0.90 for four-, six-, and eight-day windows. The AUC 
uniformly increased with window length. Compared to two-day windows, four-day windows 
resulted in a higher AUC, accuracy, and specificity, but sensitivity dropped from 0.89 to 0.85. 
A decrease in sensitivity is undesirable when the cost of missing a true positive is high (e.g. 
suicide). A monitoring system to track illness severity of patients already diagnosed with 
schizophrenia might thus prioritize sensitivity, although doing so increases false positives.

Analysis window length determined which features are most predictive, mediates classifier 
performance, perhaps due to differing time scale of relevant physiology and behavior. Prior 
work on the association between schizophrenia and disturbances in the ANS as measured by 
heart rate variability metrics has shown a similar dependence on physiologically and behavio-
rally relevant time scales (Bär et al 2008, Rachow et al 2011). A feature calculated from two 
days of data may contain information about systems mediated by circadian rhythms and sleep. 
Alternatively, a feature calculated from eight days of data may contain information about 
social activity, behavior, and lower-frequency physiological dynamics. On the scale of days 
to weeks, social drivers of behavior (i.e. cadence of the work week) that are not present on 
the scale of hours may become more apparent in these data. Schizophrenia patients typically 
have disrupted social routines (Kahn et al 2015). Recordings on the order of months may be 
necessary to measure physiology or behavior mediated by hormonal cycles or seasons. The 
selection of analysis window length thus may be an important consideration in the design of 
studies for monitoring patients with mental illness.

We assessed the relative contribution of HR and locomotor activity features to classifier 
accuracy. Previously we have shown a combination of HR and activity features outperforms 
either HR or activity features alone (Osipov et al 2015). Here we show the same trend for 
both two- and eight-day analysis windows (table 2). For two-day analysis windows, using 
activity features (AUC of 0.86) resulted in better classifier performance than HR features 
(AUC of 0.84). For eight-day analysis windows, using HR features (AUC of 0.90) resulted in 
slightly better classifier performance than activity features (AUC of 0.89). Using both HR and 
activity features together improved the AUC, for both two- and eight-day analysis windows. 
Locomotor activity and HR are correlated—the former introduces artifact and random error 
to HR, and HR tends to rise during locomotor activity—yet contribute complementary and 
non-redundant information about subject behavior that improves the predictive accuracy of a 
classifier.

Individual data for patients, estimated probabilities of schizophrenia P(SZ), and data 
quanti ty for each 24 h interval were visualized for a representative schizophrenia patient (fig-
ure 6(a)) and healthy control subject (figure 6(b)). Time series data were re-sampled dur-
ing signal processing, so overall data quantity per 24 h interval was almost equal between 
schizophrenia and control subjects. Upon visual inspection, HR appears more periodic for the 
schizophrenia patient compared to the control. This observation is consistent with MFEHR,1 
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being significantly lower in schizophrenia patients than in controls for both two- (figure 2) and 
eight-day analysis windows (figure 3), and with previous reports of lower HR complexity in 
these patients (Rachow et al 2011).

For some schizophrenia patients, estimated P(SZ) occasionally fell below the classification 
threshold (figure 6(a)). Likewise, for some control subjects, estimated P(SZ) rose above the 
threshold (figure 6(b)). Due to the lack of more richly labeled data, it is unclear if this misclas-
sification indicates control subjects have schizophrenic-like days and schizophrenia patients 
have normal-like days. Regardless, averaging strategies could theoretically reduce false posi-
tives. The optimal trade-off between sensitivity or specificity is determined by the use case 
and cost of false positives or false negatives; here we simply maximized the AUC.

We note several limitations of our study. Our sample size was relatively small and limited 
to patients from one geographic region and institution. Also, several factors such as mental 
and behavioral state, social status, and medication usage affect HR and activity.

Although we controlled for employment status as a proxy for social routine—which relates 
to activity and restfulness to some extent—we did not explore other potential confounders 
that could affect HRV or locomotor activity. Literature suggests potential confounders such 
as weight, BMI, diet, smoking status, renal function, etc have a moderate effect on HRV. 
However, the dominant factor by an order of magnitude is the mental response (Bernardi 
et al 2000). The second-largest dominant factor is physical movement (Knoepfli-Lenzin et al 
2010). In this work we also analyzed locomotor activity, which we have previously shown 
contains predictive information for classifying subjects by schizophrenia status (Osipov et al 
2015).

Stress relates to mental state with physiological and behavioral manifestations, and could 
thus influence our features. Skin conductance, a biomarker for stress mediated by the sym-
pathetic nervous system, has been shown to differ in schizophrenia patients (Bär et al 2008). 
Additionally, cortisol secretion and stress sensitivity may be associated with schizophrenia, 
or subsequent development of schizophrenia following the prodromal phase of the illness 
(Holtzman et al 2013, Walker et al 2013). Stress affects activity as well as other aspects of 
mobile device usage; Sano and Picard (2013) reported using using screen on, mobility, call 
or activity level information to distinguish stressed from non-stressed individuals with an 
accuracy of 75%.

Aside from matching employment status, we did not directly control for stress in our 
study. Doing so with conscious patients is challenging especially in an ambulatory setting. 
Additionally, stress invariably accompanies social risk factors such as physical abuse, sexual 
abuse, maltreatment and bullying, which are associated with increased risk of later schizo-
phrenia (Stilo and Murray 2010).

Evaluating data solely from periods of lower activity or stress based on physiology could 
reduce confounding from these random variables. Recently we attempted to reduce noise in 
data and improved classifier performance by selecting quiescent periods of data with lowest 
median HR, which is a proxy criterion for restfulness (Reinertsen et al 2017). More sophisti-
cated change point detection approaches could potentially sort data into parametrically similar 
segment, and even further increase the signal-to-noise ratio of features derived from data 
within each segment (Adams and MacKay 2007).

Antipsychotic medications have been reported to exacerbate ANS dysfunction in schizo-
phrenia patients, potentially putting patients at greater risk of cardiac mortality (Rechlin et al 
1994, Birkhofer et al 2013, Huang et al 2013). On the other hand, Mondelli et al demonstrated 
that antipsychotic medication can reduce cortisol secretion and normalize HPA-axis hyperac-
tivity in patients suffering from psychosis (Mondelli et al 2010). Bär et al (2008) did not find 
significant changes in ANS function after antipsychotics were administered to patients, while 
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(Henry et al 2010) et al found that risperidone, valproate, or mood stabilizers did not signifi-
cantly affect HRV in bipolar or schizophrenia patients. We lacked more detailed information 
about the type, dose, or adherence of antipsychotic medications taken by patients in our study. 
We thus cannot claim our results generalize to non-medicated subjects with schizophrenia. 
However, a classifier affected by a patient’s medication could potentially be used to monitor 
adherence and treatment efficacy.

Illness severity in schizophrenia fluctuates from day to day (Kahn et al 2015) and strongly 
correlates with measures of ANS dysfunction such as HR variability (Bär et al 2005, Bär et al 
2008, Henry et al 2010, Montaquila et al 2015). Our classifier output varied from day to day 
(figure 4), was based on measures of ANS dysfunction and behavior, and may have reflected 
fluctuations in illness severity. However, we lacked detailed information about symptoms, e.g. 
Brief Psychiatric Rating Scale survey data, which would be necessary for training a classifier 
to estimate illness severity.

Lastly, some hyper-parameters of our model, such as entropy template length and minimum 
amount of data per day, were selected from prior work instead of optimized. Classifier perfor-
mance could likely be improved using techniques such as Bayesian optimization (Ghassemi 
et al 2014, Shahriari et al 2016).

5. Conclusion

We evaluated the relationship between analysis window length of data recordings and classi-
fier accuracy in a small cohort of schizophrenia patients and healthy controls. A support vector 
machine was trained on HR and locomotor activity data obtained via body-worn patches and 
windowed over varying lengths ranging from two to eight days. A novel metric—multiscale 
fuzzy entropy—contributed to the predictive accuracy of our model. Our approach accurately 
classified schizophrenia status in a small cohort of subjects with an AUC of 0.91 for an analy-
sis window length as short as two days, and an AUC of 0.96 for an analysis window length of 8 
d. Features selected as most predictive also varied with analysis window length. Our classifier 
output may have reflected illness severity, although verifying this in future work will require 
gathering information about symptoms on a daily basis. This work serves as technical proof 
of the feasibility of HR and activity-based classification of illness severity in the context of 
schizophrenia.
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