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Abstract
Objective: This paper builds upon work submitted as part of the 2016 
PhysioNet/CinC Challenge, which used sparse coding as a feature extraction 
tool on audio PCG data for heart sound classification. Approach: In sparse 
coding, preprocessed data is decomposed into a dictionary matrix and a sparse 
coefficient matrix. The dictionary matrix represents statistically important 
features of the audio segments. The sparse coefficient matrix is a mapping that 
represents which features are used by each segment. Working in the sparse 
domain, we train support vector machines (SVMs) for each audio segment 
(S1, systole, S2, diastole) and the full cardiac cycle. We train a sixth SVM 
to combine the results from the preliminary SVMs into a single binary label 
for the entire PCG recording. In addition to classifying heart sounds using 
sparse coding, this paper presents two novel modifications. The first uses a 
matrix norm in the dictionary update step of sparse coding to encourage the 
dictionary to learn discriminating features from the abnormal heart recordings. 
The second combines the sparse coding features with time-domain features 
in the final SVM stage. Main results: The original algorithm submitted to 
the challenge achieved a cross-validated mean accuracy (MAcc) score of 
0.8652 (Se  =  0.8669 and Sp  =  0.8634). After incorporating the modifications 
new to this paper, we report an improved cross-validated MAcc of 0.8926 
(Se  =  0.9007 and Sp  =  0.8845). Significance: Our results show that sparse 
coding is an effective way to define spectral features of the cardiac cycle and 
its sub-cycles for the purpose of classification. In addition, we demonstrate 
that sparse coding can be combined with additional feature extraction methods 
to improve classification accuracy.
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1. Introduction

The introduction to this focus issue of Physiological Measurement sufficiently motivates 
the need for accurate, automated heart sound classification tools and references the 2016 
Physionet/CinC Challenge. The goal of the challenge was to maximize a classifier’s mean 
accuracy (MAcc) score, which is the average of the classifier’s sensitivity (Se) and specificity 
(Sp)4. Further details can be found at https://physionet.org/challenge/2016/.

The database used in conjunction with the challenge is described in detail in Liu et  al 
(2016). As a summary, the database consists of 3153 audio PCG recordings ranging from 6 to 
120 s. The signals were compiled from six different databases (A)–(F) and represent record-
ings from healthy patients as well as patients with clinically-diagnosed cardiac diseases. The 
challenge organizers retained a separate test set with signals from four of the six databases as 
well as another two independent databases (B)–(E), (G) and (I). None of the patients repre-
sented in the hidden test set have recordings in the training set.

The material presented in this paper expands on the work submitted to the 2016 Challenge 
by authors Whitaker and Anderson (2016). The novelty of our solution relates to using sparse 
coding as a tool for performing unsupervised feature extraction. Using sparse coding in 
image and audio classification tasks is an active research area (Mairal et al (2008), Wright 
et al (2009), Elad et al (2010), Kavukcuoglu et al (2010), Wright et al (2010), Charles et al 
(2011), Lee et al (2013), Huang and Aviyente (2006)). Our own previous work has found suc-
cess in sparse-domain classification tasks using support vector machines (SVMs) (Whitaker 
et al 2014).

The contributions of this paper beyond those already presented at the 2016 Computing 
in Cardiology Conference fall into two main categories. First, the dictionary learning pro-
cess is modified by incorporating a matrix norm in the dictionary update step (Whitaker and 
Anderson 2015). Second, the classifier is modified to accept time-domain features in addition 
to the sparse coding features. The improvements in heart sound classification resulting from 
these changes demonstrate that sparse coding features can be combined with other applica-
tion-specific features to generate a more accurate classifier.

2. Method

2.1. Audio preprocessing

Prior to extracting features and learning a classifier, we preprocessed the audio data by seg-
menting the heart sounds and converting the data into the frequency domain. Figure 1 offers a 
visual representation of the preprocessing steps.

Segmenting a PCG into periods is fundamental in the automated analysis of heard sounds 
(Schmidt et al 2010). As the first step of our algorithm we utilized Springer’s state-of-the-art 
segmentation code, which was provided by the Challenge (Springer et al 2016), to separate 

4 Se  =  TP/(TP  +  FN), Sp  =  TN/(TN  +  FP), MAcc  =  (Se  +  Sp)/2. TP, TN, FP, and FN are the number of classified 
true positives, true negatives, false positives, and false negatives, respectively
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each audio file into five arrays of smaller audio segments. The first array contained a list of all 
S1 sounds present in the audio. The second, third, and fourth arrays contained all of the sys-
tole, S2, and diastole portions of the segmented PCG, respectively. The fifth array contained 
copies of the full heart cycles, starting with S1.

The next step in preprocessing the audio was to convert each sound segment from the 
time domain to the frequency domain with an N-point FFT. The value of N was determined 
by looking at the maximum lengths of the segmented heart sounds. The implementation of 
Springer’s segmentation algorithm that we used in our implementation quantizes the sound 
segments’ lengths to certain values. With high probability, using a random subset would pro-
duce the same maximum lengths. We selected N to be 364, 1024, 324, 2048, and 3760 for 
S1, systole, S2, diastole, and the full cycle, respectively. At the 2 kHz sampling frequency of 
the provided PCGs, these N-values correspond to 182 ms, 512 ms, 162 ms, 1.024 s, and 1.88 s, 
respectively.

Figure 1. Visual representation of preprocessing applied to one PCG file. The 
preprocessing converts an audio file in the time domain into five arrays of frequency 
information, grouped by segmented heart sounds.

B M Whitaker et alPhysiol. Meas. 38 (2017) 1701
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Since the segmented audio files are purely real, the FFT is also symmetric, so we ignore the 
negative frequency portion of the spectrum in order to reduce computational complexity. As 
the spectrum magnitude contains the audible information available from the single-channel 
signal, we also ignore the phase to reduce computational requirements.

2.2. Sparse coding as unsupervised feature extraction

After preprocessing the PCG data, we randomly selected 1000 of the 3153 provided files from 
which to learn features. We used these training files to create five data matrices. The columns 
of the first data matrix were the preprocessed S1 segments. Likewise, the systole, S2, diastole, 
and full-cycle segments made up the columns for the other data matrices. We then applied 
sparse coding on these data matrices as a form of unsupervised feature extraction.

The goal of sparse coding is to decompose a data matrix (Y) into the product of a diction-
ary matrix (D) and a sparse coefficient matrix (X):

Y = DX. (1)

Each column of Y represents a data sample, which in our case is the N-point FFT of a single 
subsegment of PCG audio. The dictionary matrix, D, can be thought of as a set of commonly 
occurring features learned from the training data. Figure 2 gives a visual representation of 
sparse coding.

The intuition behind using sparse coding as a feature extraction tool is that each column of 
the learned coefficient matrix defines how much of each dictionary element (feature) is needed 
to reconstruct the respective column of the data matrix. Because the coefficient vectors are 
constrained to be sparse, most coefficients will be zero. This is beneficial because sparsity 
reduces the VC-dimension of the data, which is a measure of how difficult it is to create a good 
classifier (Vapnik and Vapnik 1998, Neylon 2006). Ideally in our application, the trained dic-
tionary will have some elements that correspond to spectral patterns present in normal heart 

Figure 2. Visual representation of sparse coding. The data matrix (left) is factored into 
the product of a dictionary matrix (center) and a sparse coefficient matrix (right). Each 
column of the dictionary matrix can be thought of as a commonly occuring feature 
present in the data. The sparse coefficient matrix is a map that dictates which features 
are present in a given data sample.

B M Whitaker et alPhysiol. Meas. 38 (2017) 1701
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sounds. Likewise, other elements will hopefully correspond to spectral patterns associated 
with abnormal heart sounds.

Mathematically, performing the matrix decomposition represented in (1) and figure 2 cor-
responds to solving the following minimization problem (Olshausen and Field 1997, Tosic 
and Frossard 2011):

min
D∈C,{xm}

1
M

M∑
m=1

1
2
‖ym −Dxm‖2

2 + λ ‖xm‖0 . (2)

In this equation, ym corresponds to the mth column of Y and xm corresponds to the mth 
column of X. The constant M represents the number of data samples that are available (num-
ber of columns of Y). The dictionary matrix and the sparse coefficient vectors are learned 
simultaneously. The dictionary is constrained to C, the set of matrices whose columns have 
�2-norm less than one. This prevents the dictionary from growing arbitrarily large, which 
would remove the effect of the �0 term in the objective function. The λ term is a fidelity-
sparsity tradeoff parameter.

Unfortunately, the minimization program in equation (2) is a non-convex, NP-hard prob-
lem (Tillmann 2015). However, there are ways to approximate it and come up with workable 
solutions. One such method is to relax the �0-‘norm’ to the �1-norm and alternate solving for D 
and X while keeping the other constant. These relaxations result in the alternating minimiza-
tion algorithm, outlined in algorithm 1 (Olshausen and Field 1997, Mairal et al 2014).

Algorithm 1. Alternating minimization.

Require: Signals {ym ∈ RN}m=1,...,M, initial dictionary D0 ∈ C , regularization term λ, number of 
iterations K
  1: Initialize D ← D0

  2: for k = 1, ..., K  do
  3:   for several m ∈ {1, ..., M} (in parallel) do
  4:      Calculate coefficient vectors:
  5:      xm = arg min

x

1
2 ‖ym −Dx‖2

2 + λ ‖x‖1

  6:   end for
  7:   Update dictionary:

  8:      D = arg min
D∈C

1
M

∑M
m=1

1
2 ‖ym −Dxm‖2

2

  9: end for
10: return D

The initial dictionary used in the alternating minimization algorithm is generated randomly. 
The number of iterations, K, is chosen somewhat arbitrarily, but should be large enough so that 
additional iterations would not make significant changes to the dictionary. Line 5 of the algo-
rithm is known as ‘basis pursuit denoising’ (Chen et al 1998). This is a well-studied problem, 
and we chose to solve it using the software package l1 ls developed by Koh et al (2007).

In one implementation of algorithm 1, we chose to update the dictionary (line 8) using gra-
dient descent, following the method reported in Charles et al (2011). We refer to this method 
as ‘standard sparse coding’.

In a second implementation of sparse coding, we replace the dictionary update (line 8 of 
algorithm 1) with a matrix norm minimization problem (Whitaker and Anderson 2015):

B M Whitaker et alPhysiol. Meas. 38 (2017) 1701
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D = arg min
D∈C

‖Y −DX‖1 . (3)

The norm in (3) is the matrix 1-norm, defined as

‖A‖1 ≡ max
1�n�N

M∑
m=1

|Am,n|. (4)

In other words, ‖A‖1 returns the maximum absolute column sum of A. Therefore, minimiz-
ing ‖Y −DX‖1 will minimize the absolute deviation of any given training vector. This will 
encourage the learned dictionary elements to explain every data point, regardless of how often 
it appears. Intuitively, this will force the dictionary to represent sounds that occur infrequently 
in the training data, as long as the sounds have a large enough energy. Since the training 
data consists mostly of healthy patients, and many different illnesses are represented in the 
abnormal PCGs, using this dictionary approach could result in features that better discrimi-
nate between normal and abnormal heart sounds. We refer to this second implementation as 
‘matrix norm sparse coding’.

Applying sparse coding on the data matrices resulted in five different dictionaries. Each 
dictionary represents commonly occurring spectral features present in the preprocessed S1, 
systole, S2, diastole, and full-cycle segments. Using these dictionaries, we computed sparse 
coefficient vectors for each segment of each file, which are then averaged. Thus, each PCG 
signal is represented by five sparse coefficient vectors. This process is outlined in figure 3

2.3. Additional time-domain features

In some experiments, we include 20 time-domain features in addition to the sparse coding 
features explained previously. These features are described in table 1. Ten of the features are 
the average and standard deviation of the durations of the four heart sounds and the full car-
diac cycle (RR-interval). Six features are the average and standard deviation of ratios of heart 
sound durations. The remaining four features are the average and standard deviation of ratios 
of heart sound amplitudes. All features are calculated during the segmentation preprocessing 
portion of the algorithm.

Recall that the sparse coding dictionaries are learned using only frequency information 
from the PCG signals. As a result, the learned features may not encode any time-domain infor-
mation. We show that training a classifier using both the sparse coding (frequency-domain) 
features and the time-domain features results in higher accuracy than using the sparse codes 
alone.

2.4. Classification

We used the coefficient vectors from the unused 2153 files to learn five cross-validated SVM 
classifiers, one for each segment type (S1, systole, S2, diastole, and full cycle). We used 
the libsvm software package to learn the SVMs (Chang and Lin 2011), and we trained the 
SVMs using a first-order polynomial kernel. We chose this kernel because nonlinear kernels 
can cause extreme overfitting when classifying in a sparse domain. We tuned the other SVM 
parameters using the modified cuckoo search algorithm (Walton et  al 2011). We used the 
soft-margin scores from each segment-specific SVM to train a final SVM that classified the 
PCG file to a single binary label. Figure 4 displays a visual representation of the classification 
process.

B M Whitaker et alPhysiol. Meas. 38 (2017) 1701
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Figure 3. Visual representation of sparse coding applied to one PCG file. The sparse 
coding process converts each FFT from the preprocessing phase into a sparse vector 
representation. Each group of sparse vectors is then averaged across the PCG file, 
resulting in five sparse vectors—one for each heart sound segment.

B M Whitaker et alPhysiol. Meas. 38 (2017) 1701
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The classified label produced by an SVM simply reports on which side of the learned 
decision boundary a data point lies. The SVM soft-margin score, however, is related to how 
close the data point is to the decision boundary. The magnitude of the soft-margin score can 
be interpreted as a measure of an SVM’s ‘confidence’ when assigning the label, and the sign 
of the soft-margin score corresponds to the label it would receive.

All SVMs were learned to maximize the mean accuracy score (MAcc) while including a 
parameter to encourage the sensitivity and specificity to be equal. Learning the five sparse 
coding dictionaries and the six SVMs was done offline. When we receive a new PCG file to 
test, we follow the same preprocessing procedure (which involves segmenting the audio and 
calculating the FFTs) and then learn the sparse coefficient vectors using the five dictionar-
ies corresponding to each heart sound. After averaging the sparse vectors across the file, we 
generate five soft-margin scores using the segment-specific SVMs. These five scores, and 
optionally the 20 time-domain features, are combined into a single label using the sixth SVM, 
resulting in a final answer for the new file.

3. Results

As explained previously, we present four different methods of heart sound classification in 
our analysis. The first method is identical to the method presented at the 2016 Computing in 
Cardiology Conference, which used standard sparse coding features to classify the PCG audio 
files (Whitaker and Anderson 2016). The second method was similar, but involved the matrix 
norm dictionary update. The matrix norm encourages the sparse coding dictionary to learn 
influential features by minimizing the maximum reconstruction error. Intuitively, this would 

Table 1. Time-domain features.

Feature Description

µRR Mean of RR-interval duration
σRR Standard deviation of RR-interval duration
µS1 Mean of S1 duration
σS1 Standard deviation of S1 duration
µsys Mean of systole duration
σsys Standard deviation of systole duration
µS2 Mean of S2 duration
σS2 Standard deviation of S2 duration
µdia Mean of diastole duration
σdia Standard deviation of diastole duration

µsys/RR Mean ratio of single beat’s systole and RR-interval durations
σsys/RR Standard deviation ratio of single beat’s systole and RR-interval durations
µdia/RR Mean ratio of single beat’s diastole and RR-interval durations
σdia/RR Standard deviation ratio of single beat’s diastole and RR-interval durations
µsys/dia Mean ratio of single beat’s systole and diastole durations

σsys/dia Standard deviation ratio of single beat’s systole and diastole durations

µsys/S1 Mean ratio of single beat’s systole and S1 amplitudes
σsys/S1 Standard deviation ratio of single beat’s systole and S1 amplitudes
µdia/S2 Mean ratio of single beat’s diastole and S2 amplitudes
σdia/S2 Standard deviation ratio of single beat’s diastole and S2 amplitudes

B M Whitaker et alPhysiol. Meas. 38 (2017) 1701
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allow the dictionary to learn high-energy spectral features associated with abnormal heart 
sounds. In standard sparse coding, that information could be lost as the average reconstruction 
error is minimized.

The third method uses standard sparse coding, but introduces 20 time-domain features as 
inputs into the final classifying SVM. Similarly, the fourth method combines matrix norm 
sparse coding with the time-domain features.

We repeated the procedure twice with each method in order to provide a measure of statisti-
cal reliability using the two-sample t-test.

Table 2 presents the ten-fold cross-validated sensitivity, specificity, and mean accuracy 
resulting from the two trials of each method. It also reports the p-values calculated from the 
two-sample t-test with respect to the standard sparse coding method. These values are calcu-
lated after classifying the 2153 files from the SVM training set and exclude the 1000 files used 
to learn the sparse coding dictionaries. As can be seen in the table, the matrix norm sparse 
coding features obtain higher sensitivity and specificity than standard sparse coding, but these 
improvements are not statistically significant. The table also shows that sparse coding features 
can be combined with other features for improved classification, as the two methods that use 

Figure 4. Visual representation of the classification process applied to one PCG file. 
After preprocessing and sparse coding, each file is represented by five different sparse 
coefficient vectors. An SVM is trained for each heart sound, and the respective sparse 
coefficient vector is classified with a soft margin score. These five scores are then 
combined using a final SVM to determine the label of a PCG file. When used, the 20 
time-domain features are inputs to the final SVM as well.

Table 2. Cross-validated results.

Se Sp MAcc

Standard sparse coding 0.8449 0.8537 0.8518
Matrix norm sparse coding 0.8583 0.8650 0.8615
p-value (with respect to standard sparse coding) 0.5796 0.0679 0.3124

Standard sparse coding  +  20 time-domain features 0.8771 0.8771 0.8771
p-value (with respect to standard sparse coding) 0.0983 0.0747 0.0334

Matrix norm sparse coding  +  20 time-domain features 0.8867 0.8816 0.8841
p-value (with respect to standard sparse coding) 0.1568 0.0113 0.0756
Zabihi et al (2016) 0.9423 0.8876 0.9150

B M Whitaker et alPhysiol. Meas. 38 (2017) 1701
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the 20 time-domain features outperform the other two methods. When adding the additional 
features, the improved overall scores are significant with a p-value of 0.08.

The method that reports the best cross-validated score is the matrix norm sparse cod-
ing combined with time-domain features, resulting in Se  =  0.8867, Sp  =  0.8816, and 
MAcc  =  0.8841. We also provide the CinC 2016 Challenge results from Zabihi et al, which 
represents state-of-the-art performance when measuring the cross-validated scores (Zabihi 
et al 2016, Clifford et al 2016). Comparing our method with Zabihi’s shows that our method 
matches state-of-the-art performance in specificity (0.8816 versus 0.8876), but falls short with 

Table 3. Hidden test set results.

Se Sp MAcc

Standard sparse coding 0.843 0.772 0.807
Matrix norm sparse coding 0.770 0.796 0.783
Standard sparse coding  +  20 time-domain features 0.801 0.806 0.803

Matrix norm sparse coding  +  20 time-domain features 0.764 0.827 0.796
Potes—Hidden data Potes et al (2016) 0.942 0.778 0.860
Zabihi—Hidden data Zabihi et al (2016) 0.869 0.849 0.859

Table 4. Hidden test set results, stratified by dataset.

Se Sp MAcc

Standard sparse coding 0.843 0.772 0.807
Dataset B 0.489 0.639 0.564
Dataset C 0.900 0.000 0.450
Dataset D 0.667 0.000 0.333
Dataset E 0.987 0.916 0.951
Dataset G 1.000 0.000 0.500
Dataset I 1.000 0.000 0.500
Matrix norm sparse coding 0.770 0.796 0.783
Dataset B 0.234 0.797 0.516
Dataset C 0.900 0.000 0.450
Dataset D 0.500 0.083 0.292
Dataset E 1.000 0.916 0.958
Dataset G 1.000 0.000 0.500
Dataset I 0.957 0.000 0.478

Standard sparse coding  +  TD features 0.801 0.806 0.803
Dataset B 0.532 0.589 0.560
Dataset C 0.900 0.000 0.450
Dataset D 0.583 0.083 0.333
Dataset E 0.897 0.970 0.934
Dataset G 1.000 0.000 0.500
Dataset I 0.913 0.000 0.457

Matrix norm sparse coding  +  TD features 0.764 0.827 0.796
Dataset B 0.340 0.722 0.531
Dataset C 1.000 0.000 0.500
Dataset D 0.333 0.083 0.208
Dataset E 0.962 0.973 0.967
Dataset G 1.000 0.000 0.500
Dataset I 0.870 0.000 0.435

B M Whitaker et alPhysiol. Meas. 38 (2017) 1701
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respect to sensitivity (0.8867 versus 0.9423). One possible reason for this is that we included 
a parameter to constrain the sensitivity and specificity to be nearly equal while training the 
SVMs. Removing this constraint would likely improve either sensitivity or specificity at the 
expense of the other metric.

While the numbers reported in table 2 show that adding the time-domain features results in 
an improvement in cross-validation score, they are not guaranteed to generalize to other data-
sets. To test the ability of our algorithms to generalize to other heart sound databases, we sub-
mitted them for evaluation on the hidden challenge test set. We present the results in table 3, 
along with the two best PhysioNet/CinC Challenge entries Zabihi et al (2016), Clifford et al 
(2016), Potes et al (2016).

As can be seen in the table, the algorithms did not report an improved performance on the 
hidden challenge data.

The full challenge results are reported in table 4. These results also report the sensitivity, 
specificity, and mean accuracy score achieved by our algorithms on each of the six databases 
represented in the hidden data. This data suggests that our classifier focuses on classifying 
the largest dataset (dataset E) correctly, but fails to generalize to the smaller datasets. All 
algorithms score between 0.934 and 0.967 on dataset E. The next highest mean score for an 
algorithm on a different dataset is 0.564. Several times, an algorithm classifies all samples 
from a given dataset as either all normal or all abnormal; this results in perfect sensitivity or 
specificity at the expense of the other. Moving forward, it appears that the algorithm can be 
improved by compensating for the number of samples in each database.

Our algorithm was implemented in MATLAB R2016a on a quad-core i7 processor clocked 
at 3.4 GHz with 16 GB RAM. Learning the sparse coding dictionaries and SVMs took several 
hours, but was done offline previous to classifying the cross-validation training samples. On 
average, it took our computer about 3 s to process and classify a single PCG file in the cross-
validation phase. All four methods had similar computation times.

4. Conclusion

The main contribution of this paper is to introduce sparse coding as a tool for unsupervised 
feature extraction in heart sound classification. This paper is also the first to use matrix norm 
sparse coding in a practical classification setting. We recognize that our algorithm does not 
use an exhaustive list of features. The main goal of the paper was to show that sparse coding 
features could be combined with other features to improve classification. For this reason, we 
did not use other tools that have been used in heart sound classification, such as frequency 
features, the presence of S3 and S4 sounds, or features related to subintervals of systole and 
diastole. Further work may incorporate additional features with the hope of improving the 
classification score or robustness. This work focuses on the versatility of sparse coding in a 
classification setting. We believe that sparse coding can have a positive impact if applied to 
other classification tasks.

We acknowledge that the current algorithm cannot be used as a diagnostic tool for cardiac 
diseases; it only detects abnormalities in cardiac cycles that may be of interest to a cardiologist 
for further evaluation.
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