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A B S T R A C T

Background and objective: The Lempel–Ziv (LZ) complexity and its variants have been exten-

sively used to analyze the irregularity of physiological time series. To date, these measures

cannot explicitly discern between the irregularity and the chaotic characteristics of physi-

ological time series. Our study compared the performance of an encoding LZ (ELZ) complexity

algorithm, a novel variant of the LZ complexity algorithm, with those of the classic LZ (CLZ)

and multistate LZ (MLZ) complexity algorithms.

Methods and results: Simulation experiments on Gaussian noise, logistic chaotic, and peri-

odic time series showed that only the ELZ algorithm monotonically declined with the reduction

in irregularity in time series, whereas the CLZ and MLZ approaches yielded overlapped values

for chaotic time series and time series mixed with Gaussian noise, demonstrating the ac-

curacy of the proposed ELZ algorithm in capturing the irregularity, rather than the complexity,

of physiological time series. In addition, the effect of sequence length on the ELZ algo-

rithm was more stable compared with those on CLZ and MLZ, especially when the sequence

length was longer than 300. A sensitivity analysis for all three LZ algorithms revealed that

both the MLZ and the ELZ algorithms could respond to the change in time sequences, whereas

the CLZ approach could not. Cardiac interbeat (RR) interval time series from the MIT-BIH

database were also evaluated, and the results showed that the ELZ algorithm could accu-

rately measure the inherent irregularity of the RR interval time series, as indicated by lower

LZ values yielded from a congestive heart failure group versus those yielded from a normal

sinus rhythm group (p < 0.01).

© 2016 Published by Elsevier Ireland Ltd.
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1. Introduction

The complexity analysis method proposed by Lempel and Ziv
(LZ) in 1976 [1] is a useful approach for evaluating the irregu-
larity of physiological time series [1–3]. Variants generated by
defining different coarse-graining processes have been

extensively applied to a variety of physiological time series in-
cluding intracranial pressure [4], electroencephalogram [5–8],
electromyographic [9], mechanomyographic [2,10], nocturnal
oximetry [11], and electrocardiographic (ECG) signals [12–14].

In most cases, the classic LZ complexity (CLZ) algorithm is
executed by transforming an original signal into a binary se-
quence by comparing it with a preset median [4,6,7] or mean
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value [12,13] as the threshold. However, the binary coarse-
graining process is associated with a risk of losing essential
data, in addition to a radical distortion of dynamic character-
istics in certain instances. When higher quantification levels
(or symbols) are employed in the coarse-graining process, more
detailed information in the original signal can be preserved.
As an improvement of the binary coarse-graining process, a
method entailing the use of three quantification levels has been
employed in certain studies [5,14]. Furthermore, Sarlabous et al.
[2,3] recently proposed a multistate LZ (MLZ) complexity al-
gorithm to quantify both the irregularity and the amplitude
variations in the original signal, obtaining more favorable results
when the number of quantification levels was set to more than
40 [2,3]. Nevertheless, determining the optimal quantifica-
tion level in a practical environment is difficult because
superfluous information within the signal (e.g. spikes of high
amplitude and unexpected noise) may be unnecessarily quan-
tified when higher quantification levels are used.

Several LZ algorithms exist, but they do not clarify what type
of signal property they directly quantify: irregularity or com-
plexity.This situation exists in nonlinear analysis methods, such
as entropy measures, in addition to LZ algorithms. Recent
studies have closely linked existing LZ algorithms (CLZ and MLZ)
with signal irregularity rather than complexity [1–3]. Further-
more, the LZ values from random signals overlap with those
from chaotic signals, corroborating to the inaccuracies found
in LZ algorithms.

Our study applied a novel encoding LZ (ELZ) algorithm to
directly and accurately quantify the irregularity, rather than
the complexity, of a physiological time series. The perfor-
mance of the ELZ algorithm was compared with those of the
existing CLZ and MLZ methods on both the artificial and the
MIT-BIH interbeat (RR) interval time series.

2. Method

2.1. CLZ and MLZ algorithms

For CLZ complexity, the coarse-graining process is performed
by comparing signal X with a threshold to transform X into a
binary sequence R. That is, whenever the signal is larger than
the threshold, one maps the signal to 1, otherwise, to 0. The
mean or median of the signal is usually selected as the thresh-
old [4,12,15]. In this study, the mean value was used for
calculating CLZ.

The MLZ converts signal X = x1,x2, …,xn to a 0, 1, 2, …, γ − 1
sequence S, where γ is an integer number higher than 3. The
coarse-graining process is described in Refs. [2, 3]. In the current
study, γ was set to 90 to execute the MLZ to derive more ac-
curate results.

After the coarse-graining process, the LZ complexity counter
c(n) of the new symbol sequence can be calculated according
to the following rules [4,12,16]:

Let S and Q respectively denote two strings, and SQ is the
concatenation of S and Q, whereas string SQπ is derived from
SQ after its last character is deleted (π means the operation
to delete the last character in the string). Let v(SQπ) denote the
vocabulary of all different substrings of SQπ. Initially, c(n) = 1,
S = s1, and Q = s2, and thus SQπ = s1. In summary, S = s1s2, …, sr

and Q = sr+1, and thus SQπ = s1s2, …, sr. If Q belongs to v(SQπ),
then sr+1, that is, Q is a substring of SQπ, and so S does not
change, and renew Q to be sr+1sr+2, and then judge if Q belongs
to v(SQπ) or not.This process is repeated until Q does not belong
to v(SQπ). Next, Q = sr+1sr+2, …, sr+i, which is not a substring of
SQπ = s1s2, …, srsr+1,…, sr+i−1; therefore, c(n) is increased by 1. Sub-
sequently, S is renewed to be S = s1s2, …, sr+i, and Q = sr+i+1. The
procedures are repeated until Q is the last character. Concur-
rently, c(n) is the number of different substrings (new pattern)
contained in the new sequence. Finally c(n) can be normal-
ized as

C n c n
n

n
( ) = ( ) ( )log

,α (1)

where n is the length of signal X, α is the number of possible
symbols contained in the new sequence, and C(n) is the nor-
malized LZ complexity and denotes the arising rate of new
patterns within the sequence. In practice, the normalized com-
plexity C(n), instead of c(n), is considered [12]. The detailed
calculation process of LZ complexity is described in Refs. [1,
4, 12, 14, 16].

2.2. Encoding LZ complexity

ELZ transforms each xi contained within the original signal
X = x1, x2, …, xn into a 3-bit binary symbol b1(i)b2(i)b3(i), and the
process is described as follows:

(1) The first binary digit b1(i) is determined by comparing
xi with a threshold Tmean which is the mean of signal X,
and it is defined as follows:

b i
if x T
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1
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(2) The second binary digit b2(i) is determined by the dif-
ference between xi and xi−1, and it is defined as follows:

b i
if x x

if x x
i ni i

i i
2

1

1

0 0

1 0
2 3( ) =

− <
− ≥

⎧
⎨
⎩

= …−

−
, , , , , (3)

where b2(1) is set to 0.

(3) For the third binary digit b3(i), a variable Flag is first
denoted as follows:

Flag i
if x x dm

if x x dm
i ni i

i i

( ) =
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− ≥

⎧
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= …−

−

0

1
2 31

1

, , , , , (4)

where dm is the mean distance between adjacent points within
signal X. If Flag(i) is 0, point xi is relatively close to point xi−1;
otherwise, the two points are relatively far away. Subse-
quently, b3(i) is calculated as follows:

b i NOT b i XOR Flag i i n3 2 2 3( ) = ( ) ( )( ) = …, , , , , (5)

where b3(1) is 0. Moreover, b2(i) = 1 and Flag(i) = 1 mean that xi
is not only higher than xi−1 but also is relatively farther from
xi−1 compared with b2(i) = 1 and Flag(i) = 0.
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Fig. 1 illustrates an example for understanding the afore-
mentioned process. Fig. 1(a) shows a 10-point sequence, and
the red line represents the mean value. For point p4, b1(p4) is
1 because p4 is higher than the mean value. Furthermore, b2(p4)
is 0 because p4 is lower than p3. Flag(p4) is 0 because the dis-
tance between p4 and p3 is less than the mean distance dm;
therefore, b3(p4) is set to 1 according to Eq. (5). Finally, point
p4 is transformed into a 3-bit binary symbol 101, and its cor-
responding decimal value is 5. Fig. 1(b) presents the results of
the coarse-graining process. Fig. 1 indicates that the new se-
quence waveform after the coarse-graining process is
approximately consistent with the original sequence.

An 8-level sequence is finally derived from the original signal
X to calculate the complexity C(n) by using Eqs. (2–5).

2.3. Simulation test

2.3.1. Artificial sequences
Various artificial sequences, including Gaussian noise, MIX(p)
processes, chaotic sequences, and periodic signals, were em-
ployed to observe the performance of ELZ. Logistic (Logi)
mapping xn+1 = µ × xn×(1 − xn), 1 < µ ≤ 4, is considered with µ = 4.0
(Logi(4.0)) and µ = 3.8 (Logi(3.8)) for chaotic sequences and µ = 3.5
for periodic sequence, respectively; the closer the value is to
4, the more chaotic the sequence is. An MIX(p) process is in-
herently a sinusoid signal of length N, where N × p randomly
chosen points are replaced with independent identically dis-
tributed random noise [17]. In the current study, p = 0.2 and
p = 0.4 were used to generate two MIX(p) processes with dif-
ferent irregularity levels. Gaussian white noise was generated
using the function (wgn) in MATLAB software.

For each type of sequence, 20 samples were employed, in-
cluding 20 realizations for Gaussian noise and MIX(p) processes,
respectively, and 20 randomly selected initials adopted for lo-
gistic attractors for generating 20 chaotic (µ = 4.0 and µ = 3.8)
and 20 periodic (µ = 3.5) sequences.

For further verification, surrogate data analysis was em-
ployed to clearly understand the performance of the three LZ
algorithms. The surrogate data analysis entails initially speci-
fying a linear process as a null hypothesis, then generating
surrogate data sets that are consistent with this null hypoth-
esis, and finally calculating a discriminating statistic for the
original data and for each of the surrogate data sets. If the
values computed from the surrogate data are significantly dif-
ferent from those computed from the original data, then the
null hypothesis is rejected and nonlinearity is detected [18].
In the current study, the null hypothesis was that the surro-
gate data were consistent with the mean and variance of the
original time series, and this hypothesis was generated through
the linear correlation of Gaussian process. According to the null
hypothesis, 20 surrogates for each realization of the logistic
mapping (Logi(4.0)) process were initially generated using the
Fourier transform algorithm [18].The surrogate data could con-
taminate the complex structures in the logistic mapping process
and increase the irregularity of the time series.

2.3.2. Analysis of typical artificial sequence
This analysis was conducted to compare the performance levels
of the CLZ, MLZ, and ELZ algorithms by using the artificial se-
quences mentioned in Section 2.3.1. The lengths of the
sequences, including short-time (100 points), medium-time (500
points), and long-time (5000 points), were used because these
were the common length types in clinical practice.

Fig. 1 – An example for the proposed coarse-graining process. (a) Before coarse-graining and (b) after coarse-graining. The
red line represents the mean of the original sequence. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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We also analyzed the effects of sequence length on the CLZ,
MLZ, and ELZ algorithms by using aforementioned typical
sequences with different lengths N (i.e., 50, 100, 200, 300, 400,
500, 750, 1000, 2000, and 5000).

2.3.3. Sensitivity analysis
This analysis was aimed at evaluating the sensitivity of the
three LZ algorithms toward the dynamic characteristics of time
series. A logistic sequence was employed for the analysis; such
a sequence maintains period doublings when parameter µ is
less than µ* (3.569945672) and then becomes irregular and
chaotic after µ*. We set the value of µ to the range 2.8–4.0 to
test the sensitivity of the three LZ algorithms.

2.4. MIT-BIH RR interval time series

Normal sinus rhythm (NSR) and congestive heart failure (CHF)
RR interval time series from the PhysioNet website were used
as clinical data [19]. The database provided RR interval

recordings from 54 individuals with NSR and 29 individuals with
CHF. The original ECG signals for both the NSR and the CHF
RR interval databases were digitized at 128 Hz, and the beat
annotations were obtained through an automated analysis with
manual review and correction.

First, RR intervals greater than 2 s were removed from the
raw RR interval recordings to avoid the influence of artifacts
[20]. Each beat in the raw ECG signals was annotated as a
normal (denoted as “N”) or an abnormal heartbeat. Abnormal
heartbeats were determined to be usually caused by supra-
ventricular or ventricular ectopic beats and were removed from
the RR interval recordings. Because a baseline drift could lead
to inaccurate results, the baseline curve was also extracted using
an improved fast median filtering algorithm [21,22] and sub-
sequently removed.

Finally, the RR time series were segmented with different
window lengths of 50, 100, 200, 300, 400, 500, 750, 1000, 2000,
and 5000 points in sequence for the subsequent complexity
computation.

Fig. 2 – Complexity results of the six kinds of sequence for CLZ, MLZ and ELZ using three time lengths. (a) Short-time (100
points), (b) medium-time (500 points), and (c) long-time (5000 points).
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3. Results

3.1. LZ results for typical artificial sequences

The complexity results of the CLZ, MLZ, and ELZ algorithms
for the six artificial sequences with short-time, medium-
time, and long-time length types are shown in Fig. 2(a), (b), and
(c), respectively. Because MIX(p) processes were added by Gauss-
ian noise, the irregularity of the MIX(p) processes was higher
than that of the logistic sequences. The irregularity should de-
crease in the order of pure Gaussian noise, mixed noise
sequences (MIX(p)), chaotic sequences (i.e., Logi(4.0) and
Logi(3.8)), and periodic sequence (Logi(3.5)). From Fig. 2, for all
three time length types, the complexity of the ELZ algorithm
decreased stepwise in the aforementioned order, whereas those
of CLZ and MLZ exhibited fluctuations at the Logi(4.0) and
Logi(3.8) sequences.Therefore, the ELZ algorithm presented the
ability of characterizing the irregularity rather than the com-
plexity of the physiological time series. However, both the CLZ
and the MLZ failed to distinguish between the irregularity and
the complexity of the physiological time series, as indicated
by the overlap in the results derived when the MIX(p) process
and chaos logistic sequences were used.

Fig. 3 shows the results of the surrogate data analysis. The
ELZ results increased significantly for all three signal length
types. The CLZ results did not demonstrate discernible in-
creases when surrogate data were used. The MLZ algorithm
distinguished between the original and the surrogate data when
the medium-time and long-time sequences were used, but it
failed when the short-time sequence was used.

3.2. Signal length effect on LZ results

Fig. 4 illustrates the CLZ, MLZ, and ELZ results at different signal
length settings. For each signal length, Gaussian noise had the
highest ELZ value for quantifying irregularity, followed by the
MIX(0.4) and MIX(0.2) processes, Logi(4.0) and Logi(3.8) se-
quences, and periodic sequence (Logi(3.5)). In addition, the ELZ
algorithm yielded consistent values at signal lengths greater
than 300, indicating the stability of this algorithm. However,
the MLZ algorithm depended on the signal length for the lo-
gistic series (Logi(4.0) and Logi(3.8)), supporting our observation
of a change in the MLZ results when the medium-time and
long-time surrogate data were used and a lack of change when
the short-time sequence was used, as presented in Fig. 3.

3.3. Results of the analysis of sensitivity to data change

The results derived from analyzing the sensitivity of the three
LZ algorithms to changes in data sequences are illustrated in
Fig. 5. Both the MLZ and the ELZ algorithms responded quickly
when parameter µ approached the threshold µ*, whereas the
CLZ algorithm demonstrated a delayed response to the dynamic
change in the sequence.

3.4. Results for MIT-BIH RR interval time series

Table 1 presents the mean and standard deviation of the values
of the CLZ, MLZ, and ELZ algorithms for both the CHF and the
NSR groups. The independent t test was used to compare the
statistical differences among the values of the three LZ

Fig. 3 – Complexity results of surrogate data test for CLZ, MLZ and ELZ. (a) Short-time (100 points), (b) medium-time (500
points), and (c) long-time (5000 points).
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algorithms between the groups. At various window lengths,
higher CLZ values were recorded in the CHF group than that
in the NSR group. Both the MLZ and the ELZ algorithms had
lower LZ values for the CHF group than for the NSR group, and
significant differences were observed at various window lengths.
The differences in the values of the ELZ and MLZ algorithms
between the groups were significant because the associated
p value was considerably lower than 0.01.

4. Discussion and conclusion

We propose a novel ELZ algorithm to quantify the inherent ir-
regularity of physiological time series. The ELZ algorithm can
reflect more detailed information from an original signal than
does the CLZ algorithm. Moreover, ELZ algorithm can avoid the
indefinite increase in quantization levels, a phenomenon ob-
served in the MLZ method.

An effective algorithm should sufficiently differentiate noise,
chaotic, and periodic signals accurately. LZ algorithms typi-
cally evaluate the irregularity (i.e., “randomness”), rather than
complexity, of time series [1,23]. As illustrated in Fig. 2, the ELZ
algorithm could distinguish between chaotic and random se-
quences more effectively than the CLZ and MLZ algorithms did
because the ELZ values monotonically decreased with the
random signal components. The ELZ values from the chaotic
sequences were lower than those from Gaussian noise and the
Gauss-mixed MIX(p) signals, and this is because a chaotic se-
quence is not inherently a pure random process. By contrast,
both the CLZ and the MLZ algorithms failed to distinguish
between noisy sequences and chaotic sequences, particu-
larly the CLZ algorithm. The results of the surrogate data
analysis also verify that the ELZ algorithm can identify the ran-
domness and chaotic characteristics of a signal under short-
time (100 points), medium-time (500 points), and long-time (5000
points) sequences.

At various signal lengths, the ELZ and CLZ values stabi-
lized when the sequence length exceeded 300, whereas the MLZ

Fig. 4 – The effect of data length on the CLZ, MLZ and ELZ results. Error bar indicates the standard deviation from the 20
realizations for each of signal types.
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Fig. 5 – Results of the logistic mapping for CLZ, MLZ and ELZ algorithms. (a) Bifurcation diagram, result of (b) CLZ, (c) MLZ,
and (d) ELZ.

Table 1 – The means and standard deviations of CLZ, MLZ and ELZ values for both CHF and NSR groups from the MIT/
BIH RR interval database.

Window length CLZ MLZ ELZ

CHF NSR p CHF NSR p CHF NSR p

50 0.957 ± 0.087 0.915 ± 0.060 >0.01 0.387 ± 0.070 0.470 ± 0.036 <0.01 0.745 ± 0.053 0.800 ± 0.014 <0.01
100 0.844 ± 0.096 0.810 ± 0.060 >0.05 0.401 ± 0.075 0.488 ± 0.038 <0.01 0.729 ± 0.054 0.785 ± 0.015 <0.01
200 0.782 ± 0.093 0.752 ± 0.060 >0.05 0.410 ± 0.077 0.498 ± 0.039 <0.01 0.712 ± 0.055 0.771 ± 0.016 <0.01
300 0.758 ± 0.090 0.734 ± 0.060 >0.05 0.413 ± 0.077 0.502 ± 0.039 <0.01 0.704 ± 0.057 0.763 ± 0.016 <0.01
400 0.745 ± 0.088 0.723 ± 0.059 >0.05 0.415 ± 0.077 0.503 ± 0.038 <0.01 0.698 ± 0.057 0.759 ± 0.016 <0.01
500 0.735 ± 0.088 0.717 ± 0.059 >0.05 0.416 ± 0.077 0.504 ± 0.038 <0.01 0.695 ± 0.057 0.755 ± 0.017 <0.01
750 0.723 ± 0.085 0.708 ± 0.058 >0.05 0.417 ± 0.077 0.505 ± 0.038 <0.01 0.688 ± 0.058 0.750 ± 0.017 <0.01
1000 0.714 ± 0.083 0.703 ± 0.058 >0.05 0.418 ± 0.077 0.506 ± 0.038 <0.01 0.684 ± 0.059 0.746 ± 0.018 <0.01
2000 0.702 ± 0.084 0.694 ± 0.057 >0.05 0.418 ± 0.077 0.506 ± 0.038 <0.01 0.677 ± 0.060 0.739 ± 0.018 <0.01
5000 0.695 ± 0.083 0.689 ± 0.057 >0.05 0.418 ± 0.076 0.506 ± 0.038 <0.01 0.671 ± 0.061 0.733 ± 0.018 <0.01

Data are expressed as mean ± standard deviation.

13c om pu t e r m e thod s and p r og r am s i n b i om ed i c i n e 1 3 3 ( 2 0 1 6 ) 7 – 1 5



algorithm was dependent on the sequence length. Because
physiological signals are typically restricted by long-term re-
cordings, a stable LZ method is essential for clinical applications.

Another common viewpoint is that an effective algorithm
should be able to respond to the dynamic and temporal char-
acteristics of a signal. The ELZ and MLZ algorithms were
sensitive to data variations, whereas the CLZ algorithm was
not (Fig. 5). Therefore, the ELZ and MLZ algorithms are more
effective in responding to the ever-changing challenges of time
series.

For the MIT-BIH RR interval time series, the signal irregu-
larity of CHF patients is usually considered to be less than that
of NSR patients [24]. In Table 1, the ELZ and MLZ algorithms
accurately measured the inherent irregularity of the RR inter-
val time series by outputting lower LZ values for the CHF group,
in which the CLZ algorithm failed to execute accurate
measurements.

The reason for the superior performance of the proposed
ELZ method to those of the other methods should be dis-
cussed. For calculating the normalized LZ complexity C(n), the
upper bound of c(n) (the number of new patterns contained in
the sequence) is limited as

c n
n

nn

( ) <
−( ) ( )1 ε αlog

, (6)

where n is the sequence length and α is the number of differ-
ent symbols in the symbol set; in addition, εn is a small quantity,
and εn→0 (n→∞) [1,4,12,14,15]. Specifically,

Limc n b n
n
nn→∞

( ) = ( ) =
( )log

,
α

(7)

For a finite time sequence, c(n) is limited to a range deter-
mined by α. For a specified sequence, different α values can
produce different c(n) and C(n) values. Whether the calcu-
lated LZ value can reflect the real situation of the sequence
is contingent on α. For the CLZ approach, α is a relatively low
value (α = 2) because the coarse-grained sequence is a 0–1 se-
quence. Therefore, the upper bound of c(n) calculated by Eq.
(7) is lower than that in a practical situation. For example, b(n)
is approximately 15 when n and α are equal to 100 and 2, re-
spectively. One possible theory is the loss of information
contained in the original sequence after the coarse-graining
process. For the MLZ method, α is a relatively high value (α = 90).
Hence, the upper bound of c(n) calculated by Eq. (7) is higher
than that in a practical situation. For example, b(n) can be 98
when n and α are equal to 100 and 90, respectively. In this situ-
ation, unnecessary information contained in the original
sequence is kept after the coarse-graining process. There-
fore, the CLZ and MLZ values cannot accurately reflect the real
situation of the sequence. The experiment proves that the ELZ
algorithm is superior to its outdated counterparts, the CLZ and
MLZ approaches.

Conflict of interest

The authors declare that there are no conflicts of interest to
this work.

Acknowledgments

This work was supported by the National Natural Science Foun-
dation of China under grants 61473174 and 61201049, Shandong
Provincial Natural Science Foundation in China under grant
ZR2014EEM003, and the Excellent Young Scientist Awarded
Foundation of Shandong Province in China under grant
BS2013DX029. We thank the MIT-BIH for providing the invalu-
able data used in our research.

R E F E R E N C E S

[1] A. Lempel, J. Ziv, On the complexity of finite sequences, IEEE
Trans. Inf. Theory 22 (1976) 75–81.

[2] L. Sarlabous, A. Torres, J.A. Fiz, J. Morera, R. Jané, Index for
estimation of muscle force from mechanomyography based
on the Lempel-Ziv algorithm, J. Electromyogr. Kinesiol. 23
(2013) 548–557.

[3] L. Sarlabous, A. Torres, J.A. Fiz, J. Gea, J.B. Galdiz, R. Jané,
Multistate Lempel-Ziv (MLZ) index interpretation as a
measure of amplitude and complexity changes, in: Proc. 31st
Annual International Conference IEEE-EMBS 2009
(EMBS2009), IEEE, 2009, pp. 4375–4378.

[4] M. Aboy, R. Hornero, D. Abásolo, D. Álvarez, Interpretation of
the Lempel-Ziv complexity measure in the context of
biomedical signal analysis, IEEE Trans. Biomed. Eng. 53 (2006)
2282–2288.

[5] D. Abásolo, R. Hornero, C. Gómez, M. García, M. López,
Analysis of EEG background activity in Alzheimer’s disease
patients with Lempel-Ziv complexity and central tendency
measure, Med. Eng. Phys. 28 (4) (2006) 315–322.

[6] J. Dauwels, K. Srinivasan, M. Ramasubba Reddy, T. Musha,
F.B. Vialatte, C. Latchoumane, et al., Slowing and loss of
complexity in Alzheimer’s EEG: two sides of the same coin?
Int. J. Alzheimer’s Dis. 2011 (2011) 539621.

[7] L. Ling, W. Ruiping, Complexity analysis of sleep EEG signal,
in: The 4th International Conference on Bioinformatics and
Biomedical Engineering 2010, 2010, pp. 1–3.

[8] J.C. McBride, X. Zhao, N.B. Munro, C.D. Smith, G.A. Jicha, L.
Hively, et al., Spectral and complexity analysis of scalp EEG
characteristics for mild cognitive impairment and early
Alzheimer’s disease, Comput. Methods Programs Biomed.
114 (2) (2014) 153–163.

[9] R. Nagarajan, Quantifying physiological data with Lempel-
Ziv complexity-certain issues, IEEE Trans. Biomed. Eng. 49
(2002) 1371–1373.

[10] A. Torres, J.A. Fiz, R. Jané, E. Laciar, J.B. Galdiz, J. Gea, et al.,
Rényi entropy and Lempel-Ziv complexity of
mechanomyographic recordings of diaphragm muscle as
indexes of respiratory effort, in: Proc. 30th Annual
International Conference IEEE-EMBS, 2008 (EMBS2008), IEEE,
2008, pp. 2112–2115.

[11] J.V. Marcos, R. Hornero, D. Álvarez, F. del Campo, C.
Zamarrón, M. López, Utility of multilayer perceptron neural
network classifiers in the diagnosis of the obstructive sleep
apnoea syndrome from nocturnal oximetry, Comput.
Methods Programs Biomed. 92 (1) (2008) 79–89.

[12] X.S. Zhang, Y.S. Zhu, N.V. Thakor, Z.Z. Wang, Detecting
ventricular tachycardia and fibrillation by complexity
measure, IEEE Trans. Biomed. Eng. 46 (1999) 548–555.

[13] X.S. Zhang, Y.S. Zhu, X.J. Zhang, New approach to studies on
ECG dynamics: extraction and analyses of QRS complex
irregularity time sequence, Med. Biol. Eng. Comput. 35 (1997)
467–473.

14 c om pu t e r m e thod s and p r og r am s i n b i om ed i c i n e 1 3 3 ( 2 0 1 6 ) 7 – 1 5

http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0010
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0010
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0015
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0015
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0015
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0015
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0020
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0020
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0020
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0020
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0020
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0025
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0025
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0025
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0025
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0030
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0030
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0030
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0030
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0035
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0035
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0035
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0035
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0040
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0040
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0040
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0045
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0045
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0045
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0045
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0045
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0050
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0050
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0050
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0055
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0055
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0055
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0055
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0055
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0055
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0060
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0060
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0060
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0060
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0060
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0065
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0065
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0065
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0070
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0070
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0070
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0070


[14] D. Abásolo, R. Alcaraz, J.J. Rieta, R. Hornero, Lempel-Ziv
complexity analysis for the evaluation of atrial fibrillation
organization, in: Proc. 8th IASTED International Conference
on Biomedical Engineering, 2011, pp. 30–35.

[15] J. Hu, J.B. Gao, J.C. Príncipe, Analysis of biomedical signals by
the Lempel-Ziv complexity: the effect of finite data size, IEEE
Trans. Biomed. Eng. 53 (2006) 2606–2609.

[16] X.S. Zhang, R.J. Roy, E.W. Jensen, EEG complexity as a
measure of depth of anesthesia for patients, IEEE Trans.
Biomed. Eng. 48 (2001) 1424–1433.

[17] S.M. Pincus, Approximate entropy as a measure of system
complexity, Proc. Natl. Acad. Sci. U.S.A. 88 (1991) 2297–2301.

[18] J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, J.D. Farmer,
Testing for nonlinearity in time sequence: the method of
surrogate data, Physica D 58 (1) (1992) 77–94.

[19] A.L. Goldberger, L.A. Amaral, L. Glass, J.M. Hausdorff, P.C.
Ivanov, R.G. Mark, et al., PhysioBank, PhysioToolkit, and
PhysioNet: components of a new research resource for
complex physiologic signals, Circulation 101 (2000) e215–
e220.

[20] L.N. Zhao, S.S. Wei, C.Q. Zhang, Y.T. Zhang, C.Y. Liu,
Determination of sample entropy and fuzzy measure
entropy parameters for distinguishing congestive heart
failure from normal sinus rhythm subjects, Entropy 17 (2015)
6270–6288.

[21] Y.T. Zhang, C.Y. Liu, S.S. Wei, C.Z. Wei, F.F. Liu, ECG quality
assessment using a kernel support vector machine and
genetic algorithm with a feature matrix, J. Zhejiang Univ.-
SCI. C (Comput. & Electron.) 15 (2014) 564–573.

[22] E. Ataman, V. Aatre, K. Wong, A fast method for real-time
median filtering, IEEE Trans. Acoust. Speech Sig. Process. 28
(1980) 415–421.

[23] J. Ladyman, J. Lambert, K. Wiesner, What is a complex
system? Philos. Sci. 3 (1) (2013) 33–67.

[24] C.Y. Liu, C.C. Liu, P. Shao, L.P. Li, X. Sun, X.P. Wang, et al.,
Comparison of different threshold values r for approximate
entropy: application to investigate the heart rate variability
between heart failure and healthy control groups, Physiol.
Meas. 32 (2011) 167–180.

15c om pu t e r m e thod s and p r og r am s i n b i om ed i c i n e 1 3 3 ( 2 0 1 6 ) 7 – 1 5

http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0075
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0075
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0075
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0075
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0080
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0080
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0080
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0085
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0085
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0085
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0090
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0090
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0095
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0095
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0095
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0100
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0100
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0100
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0100
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0100
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0105
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0105
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0105
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0105
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0105
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0110
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0110
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0110
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0110
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0115
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0115
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0115
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0120
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0120
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0125
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0125
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0125
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0125
http://refhub.elsevier.com/S0169-2607(15)30161-9/sr0125

	 A novel encoding Lempel–Ziv complexity algorithm for quantifying the irregularity of physiological time series
	 Introduction
	 Method
	 CLZ and MLZ algorithms
	 Encoding LZ complexity
	 Simulation test
	 Artificial sequences
	 Analysis of typical artificial sequence
	 Sensitivity analysis

	 MIT-BIH RR interval time series

	 Results
	 LZ results for typical artificial sequences
	 Signal length effect on LZ results
	 Results of the analysis of sensitivity to data change
	 Results for MIT-BIH RR interval time series

	 Discussion and conclusion
	 Conflict of interest
	 Acknowledgments
	 References


