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Abstract
False alarm (FA) rates as high as 86% have been reported in intensive care unit 
monitors. High FA rates decrease quality of care by slowing staff response 
times while increasing patient burdens and stresses. In this study, we proposed 
a rule-based and multi-channel information fusion method for accurately 
classifying the true or false alarms for five life-threatening arrhythmias: 
asystole (ASY), extreme bradycardia (EBR), extreme tachycardia (ETC), 
ventricular tachycardia (VTA) and ventricular flutter/fibrillation (VFB). 
The proposed method consisted of five steps: (1) signal pre-processing, (2) 
feature detection and validation, (3) true/false alarm determination for each 
channel, (4) ‘real-time’ true/false alarm determination and (5) ‘retrospective’ 
true/false alarm determination (if needed). Up to four signal channels, that 
is, two electrocardiogram signals, one arterial blood pressure and/or one 
photoplethysmogram signal were included in the analysis. Two events 
were set for the method validation: event 1 for ‘real-time’ and event 2 for 
‘retrospective’ alarm classification. The results showed that 100% true positive 
ratio (i.e. sensitivity) on the training set were obtained for ASY, EBR, ETC 
and VFB types, and 94% for VTA type, accompanied by the corresponding 
true negative ratio (i.e. specificity) results of 93%, 81%, 78%, 85% and 50% 
respectively, resulting in the score values of 96.50, 90.70, 88.89, 92.31 and 
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64.90, as well as with a final score of 80.57 for event 1 and 79.12 for event 
2. For the test set, the proposed method obtained the score of 88.73 for ASY, 
77.78 for EBR, 89.92 for ETC, 67.74 for VFB and 61.04 for VTA types, with 
the final score of 71.68 for event 1 and 75.91 for event 2.

Keywords: false alarms rejection, life-threatening arrhythmias, 
intensive care unit monitor, multi-channel information fusion, 
rule-based alarm determining, ECG

(Some figures may appear in colour only in the online journal)

1.  Introduction

False alarms (FA) in the intensive care unit (ICU) can cause ceaseless and wearisome noise, 
thus leading to decreased quality of care (Chambrin 2001, Imhoff and Kuhls 2006), such as 
sleep deprivation, stress for both patients and staff and depressed immune systems. FA rates 
as high as 86% have been reported (Clifford et al 2015), with between only 6% and 40% of 
ICU alarms having been shown to be true but clinically insignificant (Lawless, 1994). In fact, 
only 2%–9% of alarms have been found to be important for patient management (Tsien and 
Fackler 1997). So the intelligent identification method for FAs, especially for life-threatening 
arrhythmia alarms, plays an important role for clinical application. However, accurately clas-
sifying the alarms into true and false ones is still full of challenges.

Various strategies have been employed to deal with the FA problem, including median fil-
tering (Makivirta et al 1991), an impulse rejection filter (McNames et al 2006, Liu et al 2012) 
and multi-parametric analysis (Zong et al 2004, Clifford et al 2006, Aboukhalil et al 2008). 
Since the signal quality is a major issue in most cases, the development of signal quality indi-
ces (SQIs) can contribute to the improvement of the true/false alarm decision making process. 
Thus the SQI-based methods for FA rejection have also been widely studied (Li et al 2008, Li 
and Clifford 2012, Behar et al 2013).

Previous studies showed that the use of data derived from an independent cardiac-cycle 
signal might facilitate the FA rejection. The corroboration of alarms using information 
extracted from a signal highly correlated with the electrocardiogram (ECG) such as a pul-
satile waveform that uses an independent sensor to monitor the cardiac cycle, might be able 
to suppress a large number of false ECG alarms in the ICU. For instance, the validity of an 
alarm can be determined on the basis of the blood pressure waveform (ABP) when its SQI 
exceeds a certain threshold; meanwhile the signal quality of the simultaneously recorded ECG 
is poor. The ABP waveform signal is generated by an independent transducer located away 
from the torso, exhibits different noise characteristics from an ECG waveform, and is unlikely 
to contain ECG-related artifacts (except in the case of large body movements of the patient 
that affect both sensors simultaneously). Therefore, by using information derived from ABP 
and ECG waveforms, it is likely that true ECG alarms can be effectively corroborated and 
false ECG alarms suppressed. This has inspired the PhysioNet/CinC Challenge 2015. More 
detailed description of the background to the Challenge can be found in Clifford et al (2015).

Another challenge for FA rejection is that only accurate heart rate estimation has been 
proven as insufficient to suppress the FAs from ventricular tachycardia (VTA) and ventricular 
fibrillation arrhythmias in clinical environment (Aboukhalil et al 2008, Li et al 2014, Salas-
Boni et al 2014, Fallet et al 2015). Thus, in these cases the additional features and methods 
are required to improve the performance of FA rejection in VTA and ventricular fibrillation 
arrhythmias.
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The aim of the current study was to develop a rule-based and multi-channel information 
fusion method to reduce the number of FAs and to avoid the suppression of true alarms in the 
ICU by analysing the simultaneously recorded two channel ECGs, and the possible ABP and/
or photoplethysmogram (PPG) signals. Five life-threatening arrhythmias, namely asystole 
(ASY), extreme bradycardia (EBR), extreme tachycardia (ETC), VTA and ventricular flutter/
fibrillation (VFB), were included in the true/false alarm identification. The proposed method 
consists of five progressively connected steps: signal pre-processing, feature detection and 
validation, true/false alarm determination for each channel, ‘real-time’ true/false alarm deter-
mination and ‘retrospective’ true/false alarm determination (if needed). This paper is an exten-
sion of our previous work (Liu et al 2015) reported in the Physionet/CinC Challenge 2015.

2.  Methods

2.1.  Dataset

Bedside monitor data leading up to a total of 1250 life-threatening arrhythmia alarm record-
ings were provided in the Physionet/CinC Challenge 2015 for training and testing the proposed 
algorithms (Clifford et al 2015). The training set contained 750 recordings and the test set 
contained 500 recordings. Each recording contained two ECG channels and one or two pulsa-
tile waveforms (ABP and/or PPG). All signals were resampled to 12 bit, 250 Hz and had finite 
impulse response band pass (0.05 to 40 Hz) and main notch filters applied to remove noises.

Five life-threatening arrhythmias (ASY, EBR, ETC, VTA and VFB) were included in the 
true/false alarms identification. The definitions for the five arrhythmias were summarized as 
follows (Clifford et al 2015):

	 •	ASY: no ECG QRS complex for at least 4 s
	 •	EBR: heart rate lower than 40 beats per min (bpm) for 5 consecutive beats
	 •	ETC: heart rate higher than 140 bpm for 17 consecutive beats
	 •	VTA: 5 or more ventricular beats with heart rate higher than 100 bpm
	 •	VFB: fibrillatory, flutter, or oscillatory waveform for at least 4 s

Each recording lasted for 300 s (short recording) or 330 s (long recording). An alarm was 
triggered 5 min from the beginning of each record, i.e. the alarm position located at the 300th s 
of each recording. The alarms in both training and test sets were scored by specialists to verify 
whether they were true or false alarms. Two events were provided to the Challenge partici-
pants to reduce the maximum number of FAs, while avoiding the suppression of true alarms. 
The recordings in both training and test sets were equally allocated into the two events.

	 •	Event 1—‘real-time’: using 300 s recordings, i.e. using only the data before the onset of 
the alarm and no information after that

	 •	Event 2—‘retrospective’: using 330 s recordings, i.e. using up to 30 s of data after the 
alarm

2.2.  Method description

Figure 1 shows the block diagram of the proposed rule-based and multi-channel information 
fusion method for identifying the alarms as true or false ones. It consisted of five steps—
step 1: signal pre-processing; step 2: feature detection and validation; step 3: true/false alarm 
determination for each channel; step 4: ‘real-time’ true/false alarm determination and step 5 
(if needed): ‘retrospective’ true/false alarm determination.

C Liu et alPhysiol. Meas. 37 (2016) 1298
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2.3.  Step 1: signal pre-processing

In step 1, 60 s length signals before the onset of the alarm in each channel were extracted for 
pre-processing. For the ECG signal, the invalid values of ‘Nan’ were first corrected using data 
interpolation. Then a 5–40 Hz band-pass filter was used to further filter the noises. For the 
ABP/PPG signal, whether the signal existed or not was first checked, then a 5–35 Hz band-
pass filter was used for noise rejection.

Figure 1.  Block diagram of the proposed rule-based and multi-channel information 
fusion method. Five steps are progressively connected to identify the alarms as true or 
false ones. Step 5 was only performed on the signal recordings with 330 s length.

Step 1. Signal 
pre-processing

5-40 Hz band-pass filter

60 s signal before onset of alarm

Invalid value detection & correction

ECG1 ECG2 ABP PPG

5-35 Hz band-pass filter

If exist?

60 s signal before onset of alarm

R-peak polar detection

Threshold-based R peak detection Beat detectionusing wabp.m

Step 2. Feature 
detection and 
validation

Output true/false alarm for current recording

Intra-channel 
validation

Intra-channel 
validation

Intra-channel 
validation

Intra-channel 
validation

Inter-validation between ECGs

Inter-validation between ECG and ABP/PPG channels

Baseline indices Baseline indices Baseline indices Baseline indices

Multilayer 
validation 
procedure

Step 3. True/false 
alarm determination 
for each channel

Onset-alarm indices Onset-alarm indices Onset-alarm indices Onset-alarm indices

Determine true/false Determine true/false Determine true/false Determine true/false

Step 4. Real-time 
true/false alarm 
determination

Multi-channel information fusion

Step 5. (if needed) 
Retrospective 
true/false alarm 
determination

Post-alarm indices Post-alarm indices Post-alarm indices Post-alarm indices

Determine true/false Determine true/false Determine true/false Determine true/false

Multi-channel information fusion
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2.4.  Step 2: feature detection and validation

2.4.1.  Feature detection.  In this section, features (ECG R peaks and pulse feet) were detected 
for each channel for the filtered 60 s length signal, i.e. looking back 60 s in time from the onset 
of the alarm.

For the ECG signal, the polar of the R peaks was first detected and the signal was transferred 
into an inverse signal if the polar was negative. Then a threshold-based detection method was 
used for the R peaks location and the method was summarized as follows: (1) 60 s ECG signal 
was first segmented into 10 segments without overlap and the maximum amplitude values in 
each segment were extracted; (2) the median value of the 10 maximum amplitude values was 
calculated, and was multiplied by an amplitude parameter Pamp as the amplitude threshold; 
(3) the ECG signal below this amplitude threshold was set as this amplitude threshold and the 
local maxima in the ECG signal were searched; (4) the local maxima with an interval longer 
than a time threshold were reserved as the candidates of R peaks, and the time threshold equals 
the mean of the intervals of the local maxima multiplied by a time parameter Ptime; (5) finally, 
the candidates of the R peaks were corrected for the false positive and negative detections, 
and the final locations of R peaks were re-searched for the local maxima near the candidates. 
The performances of different combinations of the two parameters Pamp and Ptime were tested 
using the 750 training recordings for each arrhythmia type and the parameter values with the 
best results were selected as the final parameter settings shown in table 1. So the settings of 
amplitude parameter Pamp and time parameter Ptime were different for dealing with different 
arrhythmia alarm types.

For the ABP/PPG signal, the pulse feet were detected using the open source beat detector 
of the wabp.m function (Zong et al 2003).

2.4.2.  Validation of detection results and calculation of baseline indices.  After feature detec-
tion, a multilayer validation procedure was performed to validate the accuracy of the feature 
detection results. An intra-channel validation for each channel was first performed and then 
followed by an inter-channel validation.

For the intra-channel validation, the detected R peaks (or pulse feet) were first checked 
to meet the minimum number (Minnum) criteria. The settings of Minnum for each arrhythmia 
alarm type were given in table 2. Then a distance-matrix-based method was used for further 
validation and it was summarized as follows: M consecutive locations of R peaks (or pulse 
feet) from all detected R peaks (or pulse feet) with the minimum standard deviation of RR 
interval (or foot–foot interval) time series were selected. Then an M  ×  M distance matrix D 
was initialized with all 0 elements and was updated using the following rule:

( )
( )

( )
( )

⎧
⎨
⎪

⎩⎪
=

> >
D

i

j

j

i
1 if

Amp

Amp
Thr or

Amp

Amp
Thr

0 else
i j,

1 1
� (1)

Table 1.  Parameter settings of Pamp and Ptime for the threshold-based R peak detection 
method.

Signal Parameter Parameter definition

Arrhythmia type

ASY EBR ETC VTA VFB

ECG Pamp Amplitude threshold for determining 
the candidates of R peaks

0.75 0.75 0.5 0.3 0.5

Ptime Time parameter for determining the 
candidates of R peaks

0.7 0.7 0.4 0.25 0.5
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where Amp(i) means the amplitude of the ith R peak or pulse peak (searching in a fixed 
window after the ith pulse foot), Thr1 is the amplitude ratio threshold. =D 1i j,  means the mis-
matching of the signal amplitude between the ith and jth R peaks or pulse peaks, indicating 
the possible detection errors. The current channel will pass intra-channel validation for feature 

detection only if 
∑ ∑= = D

M
i
M

j
M

i j1 1 ,

2  is lower than a fixed threshold Thr2. The settings of thresholds 

Thr1 and Thr2 were also different for different arrhythmia alarm types (see table 2).
Accurately locating the M consecutive R peaks or pulse feet will be verified if the ECG/

ABP/PPG channel passed the intra-channel validation procedure. Then the reliable baseline 
indices within the 60 s time length window before the start of the alarm could be obtained with 
the reference of these M consecutive R peaks or pulse feet. These baseline indices included:

	 •	HR_base: baseline heat rate calculated from M consecutive R peaks or pulse feet, unit: 
bpm

	 •	Amp_base: baseline signal amplitude, i.e. the average value of the M consecutive R peaks 
or pulse feet

	 •	Range_base: baseline signal amplitude range, i.e. the average range of the M consecutive 
heart cycle signals

	 •	Template_base: baseline signal template, i.e. the average of the M consecutive heart cycle 
signals

In the next step, the inter-channel validation was first performed on two ECG channels. If 
both ECG channels passed the intra-channel validation, the obtained HR_base values were 
compared to exclude the potential validation errors. The parameter of the central HR (CHR) 
was pre-set for each arrhythmia alarm type (table 2). If the ratio of two HR_bases exceeded 
the range of [2/3 3/2], the ECG channel with the HR_base far from the CHR value failed the 
validation and this channel was excluded in the following analysis. If only one ECG channel 
passed the intra-channel validation, this channel was used for the following inter-channel vali-
dation. If both ECG channels failed the intra-channel validation, no inter-channel validation 
procedure between the ECG and ABP/PPG channels was performed. After the inter-channel 
validation between the ECG channels, the inter-channel validation procedure between the 
ECG and ABP/PPG channels was performed. The HR_base from the ABP/PPG channel was 

Table 2.  Threshold settings of Minnum, Thr1, Thr2 and CHR for the multilayer validation 
procedure.

Signal Parameter Parameter definition

Arrhythmia type

ASY EBR ETC VTA VFB

ECG/
ABP/
PPG

Minnum Minimum number 
of detected R peaks

15 10 30 30 15

ECG Thr1 Amplitude ratio 
threshold

2 2 2 2 2.5

Thr2 Threshold for intra-
channel validation

0.1 0.1 0.1 0.1 0.25

ABP/
PPG

Thr1 Amplitude ratio 
threshold

1.5 1.5 4 2 2.5

Thr2 Threshold for intra-
channel validation

0.4 0.4 0.2 0.1 0.25

ECG CHR (bpm) Pre-set central value 
of heart rate

75 75 100 100 75
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also compared with that from the validated ECG channel. If the ratio of the HR_base values 
exceeded the range of [2/3 3/2], the ABP/PPG channel was also excluded in the following 
analysis.

The multiple parameters in table 2 were also trained and optimized using the 750 training 
recordings for each arrhythmia type. More specifically, the parameters of Minnum and CHR 
were determined by a gross observation for both true and false alarm types recording-by-
recording. The parameters of Thr1 and Thr2 were determined by the grid-search method on a 
limited range of [1 5] for Thr1 with a step of 0.5 and [0.05 0.5] for Thr2 with a step of 0.05.

2.5.  Step 3: true/false alarm determination for each channel

In this step, we determined the alarm as true or false for each single ECG/ABP/PPG channel 
that passed the multilayer validation procedure. The extracted baseline indices were also use-
ful for the determination. The Association for the Advancement of Medical Instrumentation 
guidelines suggested that each alarm should be raised no later than 10 s from the event onset 
(2002). So in this study, we used a time window (T_alarm) of 8 s before the onset of the alarm to 
analyze ASY, EBR, ETC and VFB arrhythmia types. For the VTA type, we added a 6 s length 
to T_alarm, i.e. a 14 s time window was used. This is because some VTA beats in the training set 
appear before the 8 s T_alarm window.

For ASY, EBR and ETC types, the detected features (R peaks and pulse feet) in the selected 
time window (T_alarm  =  8 s) were first verified by comparing the signal amplitude and the 
baseline indices of Amp_base and Range_base. The rules were: if the amplitude at the fea-
ture point is within the range of [0.5 to 2] times the Amp_base, or the signal amplitude range 
of 0.25 s window centered by the feature point is within the range of [0.5 to 2] times of 
Range_base, the detected feature point was verified as valid. Then the onset-alarm indices 
were obtained with the reference of the valid feature points:

	 •	Num_cur: number of valid feature points
	 •	HR_cur: heat rate in the current time window
	 •	MaxRR_cur: maximum RR interval in the current time window

The true/false alarm determination rules for each single channel for ASY, EBR and ETC 
arrhythmia types are shown in figure 2. Figure 3 shows an example for presenting the detailed 
determination result for recording a582s (ASY, FA).

For the VTA type, ECG channels in the time window T_alarm were segmented into four 
segments with 50% overlap. ABP/PPG channels with VTA arrhythmia and all channels with 
VFB arrhythmia in the time window T_alarm were not segments and were regarded as one 
segment. For both VTA and VFB types, changes of waveform morphology in each segment 
were quantified by: (1) calculating the mean correlation degree (Cor_cur) between each beat 
waveform and the constructed signal template Template_base; (2) calculating the morph
ology change rate (Mor_cur) by comparing the signal amplitude and the baseline indices of 
Amp_base and Range_base. If the amplitude at the feature point was beyond the range of [0.8 
to 1.2] times the Amp_base, or the signal amplitude range of the 0.25 s window centered by 
the feature point was beyond the range of [0.8 to 1.2] times the Range_base, the current beat 
was judged as changed morphology.

Mor_cur is the ratio between the changed beat number and the total beat number. The QRS 
complex width for each beat and maximum of the beat–beat heart rate were also calculated. 
The added onset-alarm indices were:

	 •	Cor_cur: Mean correlation degree in each segment compared with Template_base

C Liu et alPhysiol. Meas. 37 (2016) 1298
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	 •	Mor_cur: Ratio between changed beat number and total beat number in each segment
	 •	W_QRS: QRS complex width for each beat
	 •	MaxHR_cur: maximum of the beat–beat heart rate

The true/false alarm determination rules for each single channel for VTA and VFB arrhyth-
mia types are also shown in figure 2. Figure 4 shows an example for presenting the detailed 
determination result for recording v206s (VTA, true alarm).

2.6.  Step 4: ‘real-time’ true/false alarm determination

In this step, the final true/false alarm determination for the whole recording was made using 
the multi-channel information fusion. The multi-channel information fusion rules were shown 
in figure 5.

2.7.  Step 5 (if needed): ‘retrospective’ true/false alarm determination

In this step, the first 10 s signals in each ECG/ABP/PPG channel after the alarm were ana-
lyzed using the same analysis procedure as shown in step 3 to obtain the post-alarm indices, 
and thus the true/false alarm determination result for the current channel could be updated 
based on the results of the post-alarm indices. Then the multi-channel information fusion 

Figure 2.  True/false alarm determination rules for each single ECG/ABP/PPG channel 
signal for the five arrhythmia alarm types.

Initialization 
(for each channel )

True alarm

Determination  
(for each channel)

Yes
ASY False alarm0.7

60 /

HR_base
Num_cur
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True alarm
YesEBR False alarm42 0.06HR_cur HR_base> + × HR_base > 42Yes
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False alarm
YesVTA True alarm
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True alarm
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ECG/ABP/PPG

ECG/ABP/PPG

ECG

ABP/PPG

True alarm
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method in step 4 was used again to update the final true/false alarm determination for the 
whole recording.

2.8.  Evaluation indices

The scoring index was a function of the variables: true positives (TP, true alarms classified 
as true), false positives (FP, false alarms classified as true), false negatives (FN, true alarms 
classified as false) and true negatives (TN, false alarms classified as false), and was designed 
to treat FN—genuinely life-threatening events that the program considered unimportant—
especially harshly. The corresponding index score is defined as (Clifford et al 2015):

=
+

+ + + ×
×Score

TP TN

TP TN FP 5 FN
100� (2)

where the FN detections are penalized five times compared to FP detection.
The indices of the true positive ratio (TPR, i.e. sensitivity) and true negative ratio (TNR, i.e. 

specificity) were also included in the evaluation, and they are defined as:

=
+

×
TP

TP FN
TPR 100%� (3)

=
+

×TNR
TN

TN FP
100%� (4)

Figure 3.  An example for determining a true/false alarm for each channel signal in 
recording a582s (ASY, false alarm). All three channels have passed the multilayer 
validation procedure. The detected R peaks and pulse feet are marked as a red circle 
‘⦁’, the selected feature points for calculating the baseline indices are marked as a 
green circle ‘⦁’ and the valid feature points in the time window T_alarm (8 s) are marked 
as a pink circle ‘⦁’. The results of the baseline (HR_base, Amp_base and Range_base) 
and onset-alarm (Num_cur and MaxRR_cur) indices for each channel are shown at the 
top of each waveform. The ECG2 channel is determined as FA according to the rules 
of Num_cur  >  0.7  ×  HR_base  ×  T_alarm/60 and MaxRR_cur  <  3 s (shown in figure 2).
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Figure 4.  An example for determining a true/false alarm for each channel signal in 
recording v206s (VTA, true alarm). All three channels have passed the multilayer 
validation procedure. The detected R peaks and pulse feet are marked as a red circle 
‘⦁’, the selected feature points for calculating the baseline indices are marked as a green 
circle ‘⦁’ and the valid feature points in the time window T_alarm (14 s) are marked as a 
pink circle ‘⦁’. Three baseline indices (HR_base, Amp_base and Range_base) for each 
channel are shown at the top of each panel. ECG signals in the time window T_alarm 
are segmented into four segments and the onset-alarm indices (HR_cur, Cor_cur and 
Mor_cur) for each segment are reported. The results of the onset-indices in ECG1 from 
the first segment in the time window T_alarm verify that this channel is a true alarm 
according to the rules of HR_cur  >  100, Cor_cur  <  0.78 and Mor_cur  >  0.5 (see 
figure 2).
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Figure 5.  Multi-channel information fusion rules for determining true/false alarms for 
the whole recording.
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3.  Results

3.1.  Evaluation results of the proposed method

Table 3 shows the evaluation results of the proposed rule-based and multi-channel informa-
tion fusion method on both training and test sets. The TPR results from the training set were 
all 100% for ASY, EBR, ETC and VFB types, and were 94% for the VTA type. The corresp
onding TNR results were 93%, 81%, 78%, 85% and 50% respectively, resulting in score val-
ues of 96.50, 90.70, 88.89, 92.31 and 64.90, as well as with a score of 80.57 for event 1 and 
79.12 for event 2 respectively. The results of the open source entries obtained the score values 
of 88.73 for ASY, 77.78 for EBR, 89.92 for ETC, 67.74 for VFB and 61.04 for VTA types, 
with the final score values of 71.68 for event 1 and 75.91 for event 2.

3.2.  Result comparisons among our method, example entries and voting algorithm

Three example entries were provided in the Physionet/CinC Challenge 2015 to serve as a 
basis for Challenge participants. The results from a voting algorithm were also provided for 
comparison (Clifford et al 2015). This voting algorithm took the top 13 best independent per-
formers’ final submissions (judged by the training scores) and voted the submissions together 
in an un-weighted and trivial manner.

Figure 6 shows the result comparisons of the evaluation indices among our method (on 
both training and test sets), three example entries (on the test set) and the voting algorithm (on 
the test set). Our method performed much better than the example entries but had a great gap 
from the voting algorithm, which reported the highest unofficial score values in the Challenge 
(score 84.26 for event 1 and 87.04 for event 2).

3.3.  Evaluation on running time

The algorithm’s computational load is important in clinical practice, especially for real-time 
application. Our method’s average and maximum running times are 10.2% and 13.1% of the 
quota respectively on the training set, and are 10.3% and 12.8% of the quota respectively on 
the test set, which were within the time limitation of the Challenge.

Table 3.  Evaluation results of the proposed rule-based and multi-channel information 
fusion method.

Arrhythmia 
type

Training set (N  =  750) Test set (N  =  500)

Number 
of TP

Number 
of FN

Number 
of FP

Number 
of TN

TPR 
(%)

TNR 
(%) Score

TPR 
(%)

TNR 
(%) Score

ASY 22 0 7 93 100 93 96.50 89 93 88.73
EBR 46 0 8 35 100 81 90.70 90 91 77.78
ETC 131 0 2 7 100 78 88.89 98 60 89.92
VFB 6 0 8 44 100 85 92.31 89 69 67.74
VTA 84 5 126 126 94 50 64.90 79 69 61.04
Event 1 151 2 74 148 99 67 80.57 89 78 71.68
Event 2 138 3 77 157 98 67 79.12 93 78 75.91

C Liu et alPhysiol. Meas. 37 (2016) 1298



1309

4.  Discussion

A rule-based and multi-channel information fusion method has been developed to identify 
the ICU alarms as true or false ones for five life-threatening arrhythmias (ASY, EBR, ETC, 
VTA and VFB). Its accuracy has been evaluated using a total of 1250 simultaneously collected 
multi-channel physiological recordings (two ECG channels, and ABP and/or PPG channel) 
(Clifford et al 2015). High sensitivity (i.e. TPR) values of 89% and 93% were achieved for 
event 1 and event 2 respectively in the official phase of the PhysioNet/CinC Challenge 2015 
(Clifford et al 2015), accompanied by moderate specificity (i.e. TNR) values of both 78%. For 
the training set, sensitivity values were even higher and were 99% and 98% for event 1 and 
event 2 respectively, while specificity values decreased to both 67%.

The unique novelty of the proposed method is that it used a multilayer validation procedure 
to confirm the accuracy of the detected feature points. Thus reliable baseline indices could 
be obtained to improve the performance for true/false alarm determination. The function of 
the validation procedure is similar to the signal quality assessment, which has been proven to 
play an important, even essential, role in the feature detection of multi-channel physiological 
signals (Clifford and Moody 2012, Liu et al 2014). For the Challenge, both the winners in 
event 1 (Plesinger et al 2015) and event 2 (Fallet et al 2015) used the signal quality assess-
ment steps, showing its importance. The multilayer validation procedure ensured the reliable 
baseline indices, thus improving the performance of the true/false alarm determination that 
was based on the comparison between baseline and onset-alarm indices, or between baseline 
and post-alarm indices if retrospective signals were provided. From a review of the works 
with the top nine scores in the official phase of the Challenge (Ansari et al 2015, Antink and 
Leonhardt 2015, Couto et al 2015, Eerikainen et al 2015, Fallet et al 2015, Kalidas and Tamil 
2015, Krasteva et al 2015, Liu et al 2015, Plesinger et al 2015), our method is the only method 

Figure 6.  Result comparisons of evaluation indices among our method (on both 
training and test sets), three example entries (on the test set) and the voting algorithm 
(on the test set). (A) and (B) are the results for event 1 and event 2 respectively. E1–E3: 
example entries 1–3 respectively, M1: our results on the test set, M2: our results on the 
training set, VA: voting algorithm.
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including the baseline features from a 60 s time length window before the start of the alarm 
and performing the comparison between baseline and onset-alarm features, indicating the pos-
sibility for developing the personalized determination rules.

Although the scoring function was penalized five times on FN detection compared to FP 
detection, it is still an important issue that deserves discussion regarding whether the penali-
zation is enough. Zong suggested that rejecting a true alarm was more severe than letting 
go a false positive alarm five times (Zong 2015). For clinical practice, ICU monitors need 
100% sensitivity to all life-threatening arrhythmias. Zong reported that 100% sensitivity was 
achieved for ASY, EBR, ETC and VFB arrhythmias on the training set. However, the corresp
onding specificity values of 83%, 83%, 40% and 42% were relatively low. As a comparison, 
our method also output 100% sensitivity for ASY, EBR, ETC and VFB arrhythmias on the 
training set, and an output corresponding to the specificity values of 93%, 81%, 78% and  
85%. It was also worth noting that the sensitivity values of our method on the test set were not 
as high as on the training set. One possible reason may be the differences of the signal record-
ings between the training and test sets.

Moreover, our method has a limited performance on VTA arrhythmia type (sensitivity 79% 
and specificity 69% for the test set). We noted that the majority of the top performance algo-
rithms (Fallet et al 2015, Kalidas and Tamil 2015, Plesinger et al 2015) used the spectral 
characteristics of the ECG signals to detect VTA alarms since the morphology of the QRS 
complex changed a lot from normal beats to VTA beats, and these morphology changes could 
impact the huge changes of the spectral characteristics. We used only the amplitude features of 
the QRS complex but missed the spectral features. Further development by incorporating the 
spectral analysis methods will be expected to improve the performance of the current method.

With regards to the running time, our method reported the average running times of 10.2% 
and 10.3% of quota for the training and test sets respectively. Although the time was within the 
limitation range of the Challenge, it was far longer than the results reported in Zong (2015), 
which only needed about 0.2% of the quota. So there is still room to improve the running 
efficiency for the proposed method. On the other hand, it should be noted that step 2 of the 
proposed method, i.e. the feature detection on the 60 s signals and the multilayer validation 
procedure for obtaining the baseline indices, occupied most of the running time. This step 
could be regarded as a pre-learn phase for true/false alarm identification. The constructed 
baseline features could be reserved as the default values for the segment-by-segment alarm 
determination in real-time situations. Thus the running time of the code could significantly 
decrease.

In conclusion, we have proposed a rule-based and multi-channel information fusion 
method for accurately classifying the true/false alarms for five life-threatening arrhythmias. 
The proposed method achieved good performances for ASY, EBR and ETC arrhythmias, a 
moderate performance for VFB arrhythmia and a limited performance for VTA arrhythmia. 
We have identified the incorporation of the spectral analysis methods to improve the VTA 
alarm identification, as well as optimizing the algorithm to improve its running efficiency, as 
our future works.
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