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(both p < 0.01), whereas neither the SampEn nor the Fuzz-
yEn achieved comparable results (all p ≥ 0.05). This study 
suggested that the DistEn would be a promising measure 
for prompt clinical examination of cardiovascular function.
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1 Introduction

Complexity of time series has served as an essential prop-
erty for understanding the mechanism governing the 
dynamics of the system. It opens new avenues, by apply-
ing methods from chaos theory, to real-world physiological 
problems. One such problem encountered frequently in car-
diology is to extract physiological or pathological informa-
tion from an episode of heart rate data, which is believed to 
be capable of revealing the autonomic nervous control [38].

Multiple methods, including fractal dimension, correla-
tion dimension, and Lyapunov exponents, etc., have long 
been developed for quantifying complexity. Their cal-
culations are also not as time-consuming as they usually 
were, since various fast algorithms have been developed 
[3]. However, a sufficient large data set is required in the 
calculation to reconstruct the attractor and its trajectories. 
Thus, they may not be acceptable in clinical examination of 
cardiovascular function within a short screening time (e.g., 
5 min) [37], which actually draws great attention nowadays 
with the emergence of personal health care and point-of-
care diagnosis [7, 23].

A family of entropy measures, e.g., approximate 
entropy (ApEn) [25, 26], sample entropy (SampEn) [30], 
etc., has proved potential for such applications. However, 
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discussions on their statistical performances have never 
stopped [4, 6, 14–16, 19, 21, 29, 40]. It has been suggested 
that they are still highly unstable in short series [40] and 
lack consistency due to their great sensitivity to the pre-
determined parameters, especially to the threshold value r 
(similarity criterion) [16, 19]. These limitations discount 
the clinical value of entropy measures.

To attenuate the influence of r, Xie et al. [39] and Chen 
et al. [5] introduced fuzzy logic in the classification proce-
dure in ApEn and SampEn algorithm and defined thereby 
the fuzzy entropy (FuzzyEn) measure. But one study sug-
gested that the results of FuzzyEn would also switch when 
different values for r were assigned [15]. Its performance in 
short-term data sets thus requires further examination. Lake 
and Moorman developed the COSEn measure by SampEn 
with log (2r) and heart rate correction [14]. It could effec-
tively differentiate atrial fibrillation (AF) from normal sinus 
rhythm in even 12 RR intervals. Thus, it was a very promis-
ing AF diagnosis index, but would be relatively difficult to 
be generalized to a complexity measure.

In addition, Costa et al. [8, 9] have addressed another 
issue of ApEn and SampEn that they quantify the irregular-
ity of a series per se. Irregularity increases with the degree 
of randomness; hence, the increase in entropy may not be 
necessarily indicative of an increase in complexity. How-
ever, certain diseased systems in such as AF patients may 
be characterized by RR series with highly erratic fluctua-
tions that resemble white noise [8]. Such algorithms may 
assign them a higher value of entropy, whereas they are 
presumed to have less complexity than those derived from 
healthy subjects [10, 13, 18, 27, 38]. This paradox also 
exist in many other entropy measures such as FuzzyEn [5, 
39], permutation entropy [2], and conditional entropy [29], 
which always achieve maximum in a complete random 
process.

One reason for the problem may be the fact that these 
measures do not take into account the multiple temporal 
scales inherently in complex dynamics [8, 9]. Through 
a multiscale analysis framework, Costa et al. [8, 9] have 
developed a multiscale entropy measure, which evaluates 
the irregularity of series at multiple scales. However, fairly 
large data sets seem to be the prerequisite of robust multi-
scale analysis [8, 9, 24]. Although there have been a couple 
of refined multiscale procedures [1, 12, 36], their signifi-
cance over short-term application is still undetermined.

We here in this study adopt the idea of Costa et al. [8, 
9] that a relevant measure of complexity under the above 
biomedical explanation should be maximized in inherently 
complex series. We will argue that one possible reason 
for the limitations of SampEn in stability and consistency 
would arise from the incomplete use of vector-to-vector 
distances information in the state space. In this study, this 
information is accepted as an interpretation of the spatial 

structures (which are different from the temporal struc-
tures applied in the multiscale entropy), and it is presumed 
to be maximized in complex series. We will introduce a 
new measure named distribution entropy (DistEn) based 
on novel complete quantification of this information in the 
next section. Then, stability and consistency of the DistEn 
will be examined by simulation tests, and its capability on 
assessing the complexity of physiological series will finally 
be examined over short-term RR interval data.

2  Methods

2.1  DistEn algorithm

We summarize the DistEn algorithm for a series 
{u(i), 1 ≤ i ≤ N} of N points as follows. For specification, 
we will explain the idea on DistEn in the Sect. 4

1. State-space reconstruction: Form (N − m) vectors X(i) 
by X(i) = {u(i), u(i + 1), . . . , u(i + m − 1)}, 1 ≤ i ≤ N − m. 
Here m indicates the embedding dimension.

2. Distance matrix construction: Define the dis-
tance matrix D =

{

di,j

}

 among vectors X(i) 
and X(j) for all 1 ≤ i, j ≤ N − m, wherein 
di,j = max{|u(i + k) − u(j + k)|, 0 ≤ k ≤ m − 1} is the 
Chebyshev distance between X(i) and X(j).

3. Probability density estimation: The distribution char-
acteristics of all di,j for 1 ≤ i, j ≤ N − m should be 
complete quantification of the information underlying 
the distance matrix D. We here apply the histogram 
approach to estimate the empirical probability density 
function (ePDF) of D. If the histogram has M bins, we 
use pt, t = 1, 2, . . . , M to denote the probability (fre-
quency) of each bin. To reduce bias, elements with 
i = j are excluded when estimating the ePDF.

4. Calculation: Define the DistEn of u(i) by the classical 
formula of Shannon entropy, that is

Note that we mark a ‘–’ in (1) to differentiate this form 
from the following one. DistEn is thus expressed in bits. 
But it can certainly be also expressed in nats if we uti-
lized the natural logarithm function. In this work, we 
used the base-2 logarithm so that we could choose a 
value of M as the integer power of 2. It should be noted 
that the selection of M is not as critical as the selection of 
r in ApEn or SampEn because a relatively large value of 
M should properly unfold the distribution of D. The total 
amount of elements in matrix D except its main diagonal 

(1)DistEn(m, M) = −

M
∑

t=1

pt log2 (pt).
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is (N − m)(N – m − 1), and this should then be the maxi-
mum value that M can be assigned. The spatial structures 
will be over-unfolded if M > (N − m)(N – m − 1), and 
consequently the information underlying D cannot be 
properly quantified. Additionally, we note that di,j = dj,i. 
Thus, D itself is symmetrical. Only the upper or lower 
triangular matrix will actually be adequate for the estima-
tion of the ePDF. This attribute can be used to facilitate 
its fast calculation.

The theoretical lower and upper limits of DistEn are 
0 and log2(M), corresponding to one-peak and fully flat 
ePDF, respectively. To consolidate the DistEn results cal-
culated with different M, we again defined the normalized 
DistEn of u(i) as

Thus, the range of DistEn should be within [0, 1]. Note that 
pt log2(pt) = 0 when pt = 0 in both (1) and (2).

2.2  Simulation tests

2.2.1  Theoretical data

It was essential to observe first the performances of DistEn 
in series with known complexity levels. We thus applied sim-
ulated chaotic series, Gaussian noise, MIX(p) processes, and 
periodic signals generated by customized MATLAB (Ver. 
R2013a, Mathworks Inc, MA, USA) codes. The Logistic 
attractor x(n + 1) = ω × x(n) × (1 − x(n)) was considered 
with ω = 4.0 for chaotic series and ω = 3.5 for periodic sig-
nals (period 4), respectively. The MIX(p) process is in nature 
sinusoid signal of length N, where N × p randomly chosen 
points are replaced with independent identically distributed 
random noise [25]. We applied p = 0.1 and 0.2, respectively, 
to generate two MIX(p) processes with different complex-
ity levels. The Gaussian noise was generated by the random 
number function (randn) in MATLAB.

Twenty realizations of each model were performed to 
eliminate random factors (20 randomly chosen initials were 
adopted for Logistic attractors to generate 20 realizations 
of chaotic and periodic series, whereas 20 independent 
realizations were directly performed for MIX(p) process 
and Gaussian noise). Besides, we always allowed a tran-
sient (200 data points) before sampling a data set to ensure 
the dynamics had settled down on its attractor.

2.2.2  Assessing complexity of chaotic series and stochastic 
processes

As mentioned above, the chaotic series should have the 
maximum complexity; its DistEn should be maximized in 

(2)DistEn(m) = −
1

log2 (M)

M
∑

t=1

pt log2 (pt).

consequence. Additionally, Gaussian noise and MIX(p) 
process were both stochastic in nature. Their complexity 
levels should be in accordance with their irregularity lev-
els (for the same type of series). Therefore, DistEn should 
reduce from Gaussian noise to MIX(0.2), and further to 
MIX(0.1) gradually. The periodic series should have the 
minimum DistEn unquestionably.

We would here testify the above assumption by the 
theoretical data. In this test, the series were all generated 
in length of 400 points as this was nearly the average data 
length for 5-min short-term RR interval series. We chose 
m = 2 and M = 512 (29) in the calculation of DistEn. 
For comparison, we also calculated the SampEn [30] and 
FuzzyEn [5] results with parameters m = 2 and r = 0.2σ, 
wherein σ was the standard deviation of each realization. 
We applied r = 0.2σ here since it had been recommended 
that r could be selected from the interval [0.1σ, 0.25σ] 
[25, 30], and greater r value could, to some extent, avoid 
the appearance of invalid ln(0). We did not perform ApEn 
because the weight of self-matches in ApEn would be very 
important in such small data sets [28]. It would introduce 
considerable bias in ApEn results.

We then employed surrogate data analysis to better 
understand the results. Twenty surrogates were performed 
for each realization of the Logistic chaotic series. Surro-
gate data analysis should contaminate the complex struc-
tures in the Logistic chaos, and consequently, the results 
could resemble a random process. Increased SampEn and 
FuzzyEn results of surrogates would be obtained, whereas 
reduced DistEn results should be expected. The Fourier 
transform algorithm was applied here to generate the sur-
rogate data [34]. Besides, traditional SampEn and FuzzyEn 
are variance-independent measures. To understand the vari-
ance effect on DistEn, we here rescaled the amplitude of 
the logistic chaotic series by different factors so as to moni-
tor DistEn as a function of variance.

2.2.3  Length effects

To assess the algorithms’ sensitivity to data length, we eval-
uated DistEn in the aforementioned five series as a function 
of data length N, which was set at ten different values from 
50 to 2,000 logarithmically to stress its short-term appli-
cation. We chose m = 2 and M = 512 in all calculations 
of DistEn. Similarly, we also calculated the SampEn and 
FuzzyEn results with parameters m = 2 and r = 0.2σ for 
comparison purposes.

2.2.4  Sensitivity to input parameters

The DistEn is a function of m and M. Actually, M serves as 
an intermediate parameter just as what r plays in SampEn-
based measures. We have mentioned that traditional 



80 Med Biol Eng Comput (2015) 53:77–87

1 3

SampEn-based measures lacked consistency because they 
were all extremely sensitive to r. Then, we should here first 
show the dependence of DistEn on M. We set M at 40 dif-
ferent values chosen from 128 (27) to 1,024 (210) with equal 
steps. For comparison purposes, we calculated the SampEn 
and FuzzyEn results with 20 r values chosen from 0.025 to 
0.5 with a step of 0.025.

We should then show the dependence of DistEn on m. 
Here m was set at 10 different values chosen from 1 to 10 
at a step of 1. Larger values for m were not tested, since it 
was commonly set at 2, 3, or 4 and other values had rarely 
been selected [40]. Again for comparison purposes, we cal-
culated SampEn and FuzzyEn results at each value of m. 
Parameter r was set at 0.2σ in the SampEn and FuzzyEn 
calculation and M at 512 in the DistEn. All series were gen-
erated in length of 400 points.

2.3  Experiments

2.3.1  Aging effects on complexity of short‑term  
RR interval data

We applied the DistEn algorithm to the Fantasia database, 
which is publicly accessible from the PhysioNet website 
[11]. It contains 20 young (21–34 years old) and 20 elderly 
(68–85 years old) rigorously screened healthy subjects 
with their ECG collecting for 120 min in supine position 
at a sampling frequency of 250 Hz. In this study, only the 
first or the second 5-min (in 9 recordings, the correspond-
ing second 5-min episode was used instead because of poor 
signal quality in the first one) episode was applied in each 
recording so as to construct the short-term RR series.

R peaks in each episode were detected first through a 
template matching procedure (the detection results had 
showed high coincidence with the annotations encapsulated 
in the database). Ectopic R peaks were marked afterward 
by also a template matching-based algorithm [17]. RR 

interval series were constructed by the intervals of con-
secutive normal R peaks. Anomalous intervals were again 
filtered out by impulse rejection filtering [20]. DistEn with 
m = 2 and M = 512 was calculated, and for comparison, 
SampEn and FuzzyEn with m = 2 and r = 0.2σ were per-
formed. The standard deviation of normal-to-normal inter-
vals (sdNN) and normalized high-frequency band power 
(Phfn), and their corresponding Pearson correlations with 
DistEn were also calculated to show the variance effects on 
DistEn. Detrend and resampling processes were performed 
prior to the frequency-domain analysis [33].

2.3.2  Changes in complexity of short‑term RR interval 
data in heart failure (HF) patients

Twenty-one HF patients and 30 healthy volunteers were 
recruited and provided informed consents for this study. 
Their characteristics are presented in Table 1. The HF 
patients were in New York Heart Association (NYHA) 
class II–III with functional classification confirmed by the 
ultrasonic cardiogram. The left ventricular ejection frac-
tions (LVEF) from three cardiac cycles were measured by 
one cardiologist, and their average value was used as the 
reference LVEF for the specific subject. Measurements 
were undertaken in a quiet, temperature-controlled clinical 
measurement room (25 ± 3 °C) at Qilu Hospital of Shan-
dong University, by a cardiovascular function detection 
device (CV FD-I) produced by Huiyironggong Technology 
Co., Ltd, Jinan, China. ECG data in standard limb II con-
figuration were recorded in supine position for 5 min at a 
sampling frequency of 1 kHz after a 10-min rest. All study 
procedures were approved by the Clinical Ethics Commit-
tee of the Qilu Hospital of Shandong University and con-
formed with the principles in the Declaration of Helsinki.

RR interval series were constructed automatically by 
the same procedure described above. Then SampEn, Fuzz-
yEn, and DistEn were calculated with m = 2, r = 0.2σ (for 
SampEn and FuzzyEn), and M = 512 (for DistEn). Again 
the sdNN, Phfn, and their corresponding Pearson correla-
tion coefficients with DistEn were finally performed.

2.4  Statistical analysis

Since the Kolmogorov–Smirnov test suggested that all the 
entropy indices followed a non-normal distribution, the 
Mann–Whitney U test was applied to determine their dif-
ferences between healthy aging and healthy young, as well 
as between HF patients and healthy volunteers. Student’s 
t test was performed to show the differences of sdNN and 
Phfn between groups. Statistical significance was accepted 
at p < 0.05. All the above statistical analysis was performed 
using the SPSS software (Ver. 20.0, IBM, NY, USA).

Table 1  Subjects characteristics

Data are expressed as number or mean ± standard deviation

No. number, BMI body mass index, SBP systolic blood pressure, DBP 
diastolic blood pressure, LVEF left ventricular ejection fraction

Variables Healthy controls HF patients p

No. 30 21 –

Men 17 11 0.23

Age (years) 56.5 ± 7.9 59.5 ± 10.1 0.24

BMI (kg/m2) 22.8 ± 3.3 23.4 ± 5.1 0.61

SBP (mmHg) 115 ± 13 120 ± 10 0.14

DBP (mmHg) 71 ± 8 73 ± 7 0.36

LVEF (%) 66 ± 4 38 ± 6 <0.01
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3  Results

3.1  Simulation results

3.1.1  Complexity levels between chaotic series 
and stochastic processes

Complexity levels of the five series evaluated by SampEn, 
FuzzyEn, and DistEn are shown in Fig. 1a and b. The Gauss-
ian noise series has higher SampEn and FuzzyEn values than 
the other series. SampEn reduces gradually from chaotic 
series to MIX(0.2), and then to MIX(0.1). And finally, it is 0 
in periodic series. FuzzyEn reaches also around 0 in periodic 
series. It increases with the proportion of random noise in the 
MIX(p) process. But it cannot make a distinction between 
the chaotic series and MIX(0.2). By contrast, DistEn reaches 
the highest value for the chaotic series, and its values for the 
Gaussian noise, MIX(0.2), MIX(0.1), and the periodic series 
decrease gradually. The DistEn of periodic series is not zero, 
which is different from the SampEn and FuzzyEn. Figure 1c 
incorporates the surrogate data test results. The structures 
among the original Logistic chaos are destroyed as indicated 
by increased SampEn and FuzzyEn results in surrogates. 
Declined DistEn of surrogates is shown as expected, since the 
surrogates resemble a random process, in comparison with 
that of the original Logistic chaos. Thus, all entropy meas-
ures are capable of differentiating original nonlinear chaotic 
dynamics from its linear surrogates. Figure 1d shows DistEn 
as a function of variance. The amplitude of the original logis-
tic chaotic series was rescaled by certain factors so that the 
variances of the rescaled series were adjusted to 0.1, 0.5, 2, 5, 
and 10 times the variance of the original series (0.12 specifi-
cally). DistEn remains unchanged as expected, indicating the 
DistEn a variance-independent measure.

3.1.2  Stability

Figure 2 shows SampEn, FuzzyEn, and DistEn as functions 
of data length. SampEn and FuzzyEn of the Gaussian noise 
and two MIX(p) processes in small data sets all lack stability 
as shown by large error bars. Also, they can hardly tell the dif-
ference between the chaotic series and the MIX(0.2) process 
because the results switch (SampEn) or overlap (FuzzyEn) 
with increased data length. SampEn of the Gaussian noise 
with very small data sets (~50 points) even has invalid results 
(ln0). By contrast, DistEn is much more stable. It can classify 
the five series even as the length decreased to 50 points.

3.1.3  Consistency

Figure 3 shows the dependence of SampEn and FuzzyEn 
on r, and DistEn on M. Both SampEn and FuzzyEn vary 
significantly with the change of r for especially the Gauss-
ian noise. Besides, both SampEn and FuzzyEn switch with 
the variation of r for MIX(0.2) and the chaotic time series, 
which makes it difficult to tell the differences in their com-
plexity levels. Also the switching occurs although r has 
already been in the recommended range. By contrast, only 
slight variation of DistEn is showed with the changes of M. 
It is very stable for almost all values of M in a large range 
of [512, 1,024].

Figure 4 shows the dependence of all three measures on 
m. It again appears invalid SampEn results for the Gauss-
ian noise when m > 3. SampEn results of MIX(0.1) and 
MIX(0.2) fall sharply from m = 1 to m = 3 and maintain 
a low level when m > 3. The average SampEn results of 
the Logistic chaos appear to change slightly, but the stand-
ard deviations increase obviously. FuzzyEn results of all 
simulated series but the Gaussian noise fall sharply with 
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the increase in m and then stabilize at a low average level. 
No invalid FuzzyEn result appears in the Gaussian noise 
with the increase in m, but it starts to fluctuate widely. By 
contrast, DistEn results are very stable in both the aver-
age levels and the standard deviations. Note that DistEn 

of the Logistic chaos declines gradually when m > 2, and 
it even falls below the level of the Gaussian noise when 
m > 6. This decrease in DistEn may be partly due to the low 
dimension of Logistic map, which does not require a state-
space reconstruction at a high dimension.
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3.2  Experimental results

The effects of healthy aging and HF on the complexity of 
short-term RR interval data are shown in Table 2. Mann–
Whitney U test shows that there is a weak reduction of both 
SampEn and FuzzyEn in the healthy aging group. But the 
difference is not or less statistically significant (p = 0.08 
and 0.05, respectively). Besides, no significant difference 
between HF patients and healthy controls is shown by 
both SampEn and FuzzyEn (p = 0.71 and 0.32, respec-
tively). However, Mann–Whitney U test shows a signifi-
cant loss of DistEn in both healthy aging and HF patients 
(both p < 0.01). Besides, the standard deviation of DistEn 
in each group is distinctly smaller than that of SampEn and 
FuzzyEn.

The average level of the two linear indices—sdNN and 
Phfn—decreased in both healthy aging and HF patients 
groups (Table 2). But the decreases are not as signifi-
cant as the reduction in DistEn. In addition, our Pear-
son correlation analyses show that DistEn is weakly 
correlated with the two indices in all four groups (all 
0.01 < p < 0.05).

4  Discussion

4.1  Complexity versus irregularity

A novel DistEn measure was established in this study 
based on the ePDF of distances among vectors in the 
state space. It consistently yielded higher values for the 
Logistic chaos compared with the Gaussian noise (Fig. 1), 
which is in common with the idea of Costa et al. [8, 9]. 
It reduced gradually with the proportion of random noise 
for the three stochastic processes (Gaussian noise and 2 
MIX(p) processes), indicating also good sensitivity to the 
randomness. The nonzero DistEn values in analysis of the 
simulated periodic series (period 4) suggest a certain level 
of complexity. It is highly possible that DistEn would 
be further lowered in less complex series (e.g., periodic 
series with period 2), whereas SampEn and FuzzyEn 
would remain at 0, suggesting an improved performance 
using DistEn in discrimination of periodic series with dif-
ferent periods. Our surrogate data test rejected the null 
hypothesis that the Logistic chaotic series came from a 
linear Gaussian process. It is true for the Logistic chaos; 
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Table 2  Experimental results

Data are expressed as mean ± standard deviation

sdNN standard deviation of normal-to-normal intervals, Phfn normalized high-frequency band power, SampEn sample entropy, FuzzyEn fuzzy 
entropy, DistEn distribution entropy

Healthy aging group Healthy young group p HF patients Healthy controls p

sdNN (ms) 31.75 ± 28.69 57.31 ± 44.30 0.04 15.15 ± 16.89 30.90 ± 28.60 0.03

Phfn (n.U.) 0.29 ± 0.17 0.40 ± 0.19 0.07 0.22 ± 0.15 0.31 ± 0.18 0.06

SampEn 1.73 ± 0.32 1.90 ± 0.28 0.08 1.96 ± 0.64 1.88 ± 0.28 0.71

FuzzyEn 1.35 ± 0.28 1.49 ± 0.22 0.05 1.31 ± 0.45 1.45 ± 0.22 0.32

DistEn 0.80 ± 0.06 0.88 ± 0.03 <0.01 0.61 ± 0.11 0.79 ± 0.07 <0.01
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hence, DistEn indeed can be used to capture the nonlin-
ear properties in time series. In addition, DistEn is inher-
ently derived from the global distribution characteristics 
of distances among vectors. These characteristics will not 
be altered by variance rescaling since we concerned here 
was the probability density estimated by a fix bin num-
ber. What is altered by variance rescaling is the range of 
distances not the probability of each bin. Thus, DistEn 
should be variance independent. It was also proved by our 
simulation tests that DistEn results did not change after 
the amplitude-rescaling.

The novel DistEn took account of the global character-
istics of distances among vectors in the state space, which 
were quite different from SampEn-based measures. For 
specification, we would like here to use Fig. 5 to anatomize 
the main differences between SampEn and DistEn.

Distance matrices (D in the DistEn algorithm) with 
m = 2 and 3 of one simulated Gaussian noise series in 
above simulations are showed in the left panel of Fig. 5 
(but only the elements with 1 ≤ i ≤ 20 and 1 ≤ j ≤ 20 were 
depicted for clarity). Features applied in both SampEn and 
DistEn are showed in the right panel (for all values of i, j 

except elements with i = j, which are the self-matching 
distances, also the main diagonal of the distance plots in 
the left panel). SampEn divides those elements in D into 
the similar and dissimilar ones. Only the probability of 
similar ones (bars on the left of the dashed line in the right 
panel of Fig. 5, the probability can be easily calculated 
by their cumulative distribution, which is depicted here 
by solid line) is considered in SampEn calculations. Note 
that r = 0.25σ (σ = 1 here because the series is normal-
ized first by its original standard deviation) was depicted 
by the dashed line in Fig. 5 because it is usually the maxi-
mum value in application and even in such relative large 
r, the features used in SampEn are still very trivial. Thus, 
SampEn does not completely quantify the distance infor-
mation, whereas DistEn takes the full characteristics into 
account.

Different to studies of Costa et al. [8, 9], this study did 
not discuss the temporal structures at varied time scales; 
the ePDF is most likely a reflection of the spatial struc-
tures. There are certainly other ways to capture such 
structures, e.g., the permutation patterns of the amplitudes 
in permutation entropy [2]. But structures estimated in 

Fig. 5  Main calculation proce-
dures of SampEn and DistEn. a, 
d Distance matrices with m = 2 
and 3, respectively. But only 
1 ≤ i ≤ 20 and 1 ≤ j ≤ 20 are 
showed for illustrating details. 
Dark-colored area indicates 
larger distances and vice versa. 
b, e The corresponding ePDF 
(histogram) and the cumulative 
distribution curves (solid line) 
of the distance matrices in (a) 
and (d), respectively. c, f The 
corresponding enlarged parts 
of (b) and (e). The dashed line 
in (b), (c), (e), and (f) indicates 
the threshold value r, which is 
set at 0.25. Note that the series 
applied here is normalized by 
its standard deviation first; thus, 
it is not necessary for r to multi-
ply the standard deviation (color 
figure online)
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permutation entropy should also be associated with the 
irregularity since it is maximized in totally random pro-
cesses. Figure 6 shows the corresponding ePDFs of the 
simulated five series. They are quite distinct from each 
other, which thus indicate that the global quantification 
of vector-to-vector distances by ePDF is very likely a 
reasonable good way to reveal the inherent structures in 
series.

4.2  Statistical abilities of DistEn

Simulation results indicated that DistEn had improved 
performances in terms of stability and consistency. It 
worked very well in series formed by 300–600 points 
(showed in filled area in Fig. 2), which are the typical 
data lengths of short-term RR interval series. Even as the 
data length decreased to only 50 points, the DistEn still 
showed acceptable results. In addition, DistEn showed a 
lower sensitivity to input parameters than SampEn and 
FuzzyEn did.

The remarkable improvements in both the stability and 
the consistency should be also mainly due to the global 
quantification based on probability density estimation. 
Since SampEn and FuzzyEn only consider the similar 
vectors in the state space, the features adopted should 
be very trivial when the data sets are relatively small. 
However, they are still quite considerable for DistEn. 
For example, for a Gaussian noise series of 100 points, 
there are totally ~10,000 (100 × 100 approximately) dis-
tances that will be evaluated in DistEn. But within those 
distances, there are probably not more than 300 values, 
which are less than r (the probability is smaller than 0.03 
in most of our simulations when r = 0.2σ) in calculations 
of SampEn and FuzzyEn. In addition, this little informa-
tion adopted in SampEn and FuzzyEn is immensely easy 
to vary with r, which makes them very sensitive to input 
parameters.

4.3  Application to short-term RR interval data analysis

An age-related loss of fractal organization, thus com-
plexity, of RR interval data was previously observed by 
detrended fluctuation analysis (DFA) in a subset (10 young 
and 10 elderly) of the Fantasia database [13]. However, 
another most recent study used all but five subjects, which 
contained many episodes of typical sleep apnea patterns in 
the same database (19 young and 16 elderly) and reported 
that these properties did not decline with advanced age by 
also the DFA approach [31]. It was totally controversial. 
But since all subjects were recorded while watching the 
relaxing movie Fantasia, there was a possibility that some 
of them might fall asleep (at least the physiological condi-
tions under the Fantasia protocol more closely resembled 
sleep), which affected much on the fractal properties [32].

We only used the first or the second 5-min episode in 
each recording to construct the short-term RR interval 
series. Under this protocol, we could assure the awake 
condition of all subjects, and thus, it seemed to be more 
acceptable than the long-term DFA procedure in both of 
the mentioned studies [13, 31]. Our results showed that 
there was a significant reduction of DistEn in healthy aging 
group (Table 2), which supports the previous finding that 
the complexity of RR interval series decreases with healthy 
aging by means of short-term analysis.

Results also showed that both SampEn and FuzzyEn 
failed to differentiate between the two groups (Table 2). 
One reason may be the instability of SampEn and FuzzyEn 
in this short-term analysis and the other one the selection 
of r. We note that r was only set at 0.2σ arbitrarily in our 
analysis. It has the possibility that SampEn or FuzzyEn can 
tell them apart for a more seriously selected r. But the cen-
tral issue is which value should physician select for a new 
subject. The DistEn parries effectively this thorny problem 
through the developed global quantification approach based 
on probability density estimation.

0 1 0 1 0 1 0 1 0 1
0

0.005 0.01 0.15 0.15 0.3

chaotic series white noise MIX(0.2) MIX(0.1) periodic series

p

d

Fig. 6  The ePDF of 5 series estimated by histograms with 512 bins. Note that the series are normalized first by the corresponding maximum 
distance; thus, the ranges of all abscissas are within [0, 1] (color figure online)
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In addition, a significantly reduced DistEn in HF 
patients was shown in our clinical tests (Table 2), indicat-
ing great potential of DistEn in short-term examination of 
clinical data. Similarly, no significant difference in SampEn 
and FuzzyEn between the HF patients and healthy control 
groups has been found, which may be due to their relatively 
instability and inconsistency in such short-term analysis.

Our experiments also supported previous results that 
the sdNN and Phfn are reduced in healthy aging and HF 
patients. However, the large intra-group standard deviations 
made the reduction not that significant, which may be partly 
because that the RR interval data are non-stationary in nature 
and short-term linear indices cannot thus well capture their 
inherent features. The Pearson correlation analyses between 
DistEn and the two linear indices also supported the simula-
tion results that DistEn is independent of variance.

Since mainly the parasympathetic activities attenu-
ate with healthy aging while HF mostly injures the sym-
pathetic tones, our results show that DistEn is sensitive to 
the information related to both activities, and thus, it should 
also have great potentials in revealing possible pathological 
conditions in subjects with other cardiovascular diseases. 
More rigorous tests should thus be scheduled for further 
validation.

The distinctly reduced standard deviations (Figs. 2, 3, 
4; Table 2) in DistEn results indicate that our approach has 
also reasonable robustness against additive noise (since dif-
ferent realizations of the Gaussian noise and MIX(p) pro-
cesses exhibit different distributions of noise). Regarding 
RR interval data, the main interference originates from the 
false detection of R and the ectopic beats, which manifest 
themselves in spikes other than additive noise [22]. They 
can be filtered out effectively by established algorithms [17, 
20]. Thus, we can apply DistEn in the analysis of RR inter-
val data without much consideration on the noise effects. 
To fully automate the complexity analysis, we will illus-
trate the influence of spikes on DistEn in our future studies.

Besides, the sampling frequency should be another 
potential influencing factor on DistEn (it certainly has 
important effects on SampEn-based measures [35]). The-
oretically, when a series is over-sampled, there should be 
plenty of ‘redundant’ information in the distance matrix 
mainly because it is not properly reconstructed in the state 
space with relatively small m, but fairly large sampling fre-
quency. These redundant information should contaminate 
the spatial structures considered in DistEn because they 
may provide additional probabilities in distances that are 
assumed to have zero probability. However, there seems to 
be no over-sampling problems in RR interval data. Thus, 
similarly we can apply DistEn directly without much con-
sideration. To fully understand its ability, we will, however, 
discuss in detail the influence of sampling frequency in our 
future works.

5  Conclusions

This study has established a novel measure—DistEn—
for the complexity analysis of short-term heartbeat 
interval series. DistEn takes full advantage of the infor-
mation hidden in the state space by the estimation of 
the probability density of distances among vectors. The 
DistEn algorithm has been validated on both simula-
tion data and on real-world short-term heartbeat interval 
data. Improved performances of DistEn suggest it a very 
promising measure in prompt clinical examination of car-
diovascular function.
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