
Entropy 2015, 17, 6270-6288; doi:10.3390/e17096270 
 

entropy 
ISSN 1099-4300 

www.mdpi.com/journal/entropy 

Article 

Determination of Sample Entropy and Fuzzy Measure Entropy 
Parameters for Distinguishing Congestive Heart Failure from 
Normal Sinus Rhythm Subjects 

Lina Zhao 1, Shoushui Wei 1,*, Chengqiu Zhang 2, Yatao Zhang 1, Xinge Jiang 1, Feng Liu 3 and 

Chengyu Liu 1,* 

1 School of Control Science and Engineering, Shandong University, Jingshi Road 17923, Jinan 

250061, China; E-Mails: zhaolina0808@126.com (L.Z.); zytboy@sdu.edu.cn (Y.Z.); 

jiangxe2003@sina.com (X.J.) 
2 Department of Cardiology, School Hospital of Shandong University, Jingshi Road 17923, Jinan 

250061, China; E-Mail: zcqhuxx@sdu.edu.cn 
3 School of Information Technology and Electrical Engineering, University of Queensland, 

Queensland, 4072, Australia; E-Mail: feng@itee.uq.edu.au 

* Authors to whom correspondence should be addressed; E-Mails: sswei@sdu.edu.cn (S.W.); 

bestlcy@sdu.edu.cn (C.L.); Fax: +86-531-8839-5827 (S.W.); +86-531-8839-3578 (C.L.). 

Academic Editor: Raúl Alcaraz Martínez 

Received: 14 July 2015 / Accepted: 17 August 2015 / Published: 10 September 2015 

 

Abstract: Entropy provides a valuable tool for quantifying the regularity of physiological 

time series and provides important insights for understanding the underlying mechanisms 

of the cardiovascular system. Before any entropy calculation, certain common parameters 

need to be initialized: embedding dimension m, tolerance threshold r and time series length 

N. However, no specific guideline exists on how to determine the appropriate parameter 

values for distinguishing congestive heart failure (CHF) from normal sinus rhythm (NSR) 

subjects in clinical application. In the present study, a thorough analysis on the selection of 

appropriate values of m, r and N for sample entropy (SampEn) and recently proposed fuzzy 

measure entropy (FuzzyMEn) is presented for distinguishing two group subjects.  

44 long-term NRS and 29 long-term CHF RR interval recordings from 

http://www.physionet.org were used as the non-pathological and pathological data 

respectively. Extreme (>2 s) and abnormal heartbeat RR intervals were firstly removed 

from each RR recording and then the recording was segmented with a non-overlapping 

segment length N of 300 and 1000, respectively. SampEn and FuzzyMEn were performed 
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for each RR segment under different parameter combinations: m of 1, 2, 3 and 4, and r of 

0.10, 0.15, 0.20 and 0.25 respectively. The statistical significance between NSR and CHF 

groups under each combination of m, r and N was observed. The results demonstrated that 

the selection of m, r and N plays a critical role in determining the SampEn and FuzzyMEn 

outputs. Compared with SampEn, FuzzyMEn shows a better regularity when selecting the 

parameters m and r. In addition, FuzzyMEn shows a better relative consistency for 

distinguishing the two groups, that is, the results of FuzzyMEn in the NSR group were 

consistently lower than those in the CHF group while SampEn were not. The selections of 

m of 2 and 3 and r of 0.10 and 0.15 for SampEn and the selections of m of 1 and 2 

whenever r (herein, rL = rG = r) are for FuzzyMEn (in addition to setting nL = 3 and nG = 2) 

were recommended to yield the fine classification results for the NSR and CHF groups. 

Keywords: sample entropy; heart rate variability; congestive heart failure; cardiovascular 

time series; entropy parameters; fuzzy measure entropy 

PACS Codes: 87.85.Ng; 05.45.Tp; 87.19.Hh; 87.19.Ug; 87.19.Uj 

 

1. Introduction 

Analysis of entropy measures, typically like approximate entropy (ApEn) and sample entropy 

(SampEn), can provide a valuable tool for quantifying the regularity of physiological time series and 

provide important insights for understanding the underlying mechanisms of the cardiovascular  

system [1,2]. There are usually three unknown parameters that need to be initialized before performing 

entropy measures: (1) embedding dimension m, (2) tolerance threshold r, and (3) time series length N [2]. 

The parameter m determines the length of the vectors to be compared, r is the tolerance for accepting 

similar patterns between two vectors and N is the total data point number of the analyzed time series. 

Although these parameters are critical in determining the outcomes of entropy measures, no guidelines 

exist for optimizing their values for distinguishing congestive heart failure (CHF) from normal sinus 

rhythm (NSR) subjects in clinical applications. Typically, for clinical data, recommended m and r 

values are m = 1 and m = 2 and r between 0.1 and 0.25 times the standard deviation (SD) of the data [3]. 

The setting ranges of N usually vary largely, from dozens up to thousands of points [4]. The 

aforementioned recommendation is mainly based on the application of ApEn to relatively slow 

dynamic signals such as heart rate [1,3] and hormone secretion data [5], as well as used for ECG signal 

quality assessment [6,7]. Because SampEn is regarded as a modified version of ApEn designed to 

solve its shortcomings, such as bias and relative inconsistency [2], these recommended values are also 

applicable to SampEn [2,8–10]. 

For the effect of parameter N on the entropy results, a previous study reported that it did not have as 

great of an impact on the calculation of SampEn [2]. Considering that it is difficult to acquire large 

time series from humans, the choice of N used is critical for these short data sets. This is especially true 

for studies with pathological populations that are limited in their clinical measurement. However, caution 

has been advised when using time series of less than 200 points for either ApEn or SampEn [10,11]. 
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Similar study also reported that entropy measures are extremely sensitive to the parameter N for very 

short data sets [12]. When small N values are used to compute SampEn, the estimates can be 

inaccurate, because they can present a large variance.  

The choice of the parameters m and r gained larger attention compared with the parameter N due to 

the inherent sensitivity of both ApEn and SampEn [13]. The selection of m might depend on the time 

series length. The selection of r appears to be more difficult. For smaller r values, poor conditional 

probability estimates are achieved, while for larger r values, too much detailed system information is 

lost and SampEn tends to 0 for all the processes [2,5,13,14]. Amount of variance in the time series may 

also affect the entropy results. A greater SD will increase the r value for consideration of a vector 

matching and vice versa with a smaller SD. To avoid a significant noise contribution on SampEn 

computation, one must choose r larger than most of the noise [11,14]. So the original suggestion 

between 0.1 and 0.25 times the SD of the time series for r does not always demonstrate the best results 

for all data sets and therefore, elaborate methods to choose r have been developed. The parameter r 

may be chosen based on the minimization of the maximum SampEn relative error and conditional 

probability [8] or to provide the maximum value of ApEn [15] or SmapEn [16,17]. However, our 

recent study suggested that the maximum value method may not be appropriate for analyzing the 

nonlinear cardiovascular signals and is only appropriate for known random time series [16,18]. To get 

optimal m and r values, a combination effect analysis method of m and r was reported [3,9], such as 

SampEn was computed using a 10 × 20 matrix of combinations of m = 1, 2, …, 10 and r = 0.05, 0.1, 

0.15, …, 1 times the SD of the analyzed time series.  

On the other hand, whether ApEn or SampEn, the decision rule for vector similarity is based on the 

Heaviside function and it is very rigid because two vectors are considered as similar vectors only  

when they are within the tolerance threshold r, whereas the vectors just outside this tolerance are 

ignored [7,19–21]. This rigid boundary may induce to the abrupt changes of entropy values when the 

tolerance threshold r changes slightly, and even failure to define the entropy if no vector-matching 

could be found for very small r [2,7,19–22]. To enhance the statistical stability, we previously 

proposed a fuzzy measure entropy (FuzzyMEn) method, which used a fuzzy membership function to 

substitute the Heaviside function to make a gradually varied entropy value when r monotonously 

changes. Meanwhile, FuzzyMEn combined both the local similarity and global similarity in a time 

series and has a good discrimination for time series with different inherent complexity. However, the 

aforementioned three parameters, i.e., m, r and N, also need to be initialized when performing 

FuzzyMEn analysis. The problem of parameter selection also exists in FuzzyMEn. 

Therefore the main goal of the present study was to carry out an in-depth analysis to determine the 

appropriate parameters for both SampEn and FuzzyMEn to achieve optimized classification between 

NSR and CHF subjects for the long-term Interbeat (RR) Interval Databases from 

http://www.physionet.org [23]. We aimed to examine: (1) the effect of changing the parameters m, r, 

and N on the outputs of both SampEn and FuzzyMEn values for analyzing both NSR and CHF RR 

time series signals; and (2) which algorithm provides the best discrimination between NSR and CHF 

groups. The latter is important due to the fact that entropy values are only relative values and it is not 

meaningful to report entropy values for a pathological group without reporting the control group 

values. Thus, if true differences between the two groups exist, the algorithm should be able to 

discriminate them. To do this, several combinations of m and r, together with two different time series 
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length N, have been analyzed. By using both NSR and CHF subjects, this allowed for the investigation 

of different parameter combinations with SampEn and FuzzyMEn to discriminate between two groups. 

We hypothesized that the values of SampEn and FuzzyMEn would change as a function of m, r, and N; 

however, FuzzyMEn would maintain relative consistency when parameter changed. We also 

hypothesized that the CHF subjects would demonstrate a loss of complexity due to the pathological 

process, either an increased or decreased entropy values, as compared to the NSR subjects. 

2. Methods 

2.1. Data 

All data used were from the RR Interval Databases from http://www.physionet.org [23], a  

free-access, on-line archive of physiological signals. The NSR RR Interval Database was used as the 

non-pathological and control group data. This database included 54 long-term RR interval recordings 

of subjects in normal sinus rhythm aged 29 to 76. The CHF RR Interval Database was used as the 

pathological group data. This database included 29 long-term RR interval recordings of subjects aged 

34 to 79, with congestive heart failure (NYHA classes I, II, and III). Each of the long-term RR interval 

recordings is a 24-hour recording including both day-time and night-time. Both the NSR and CHF 

subjects took the Holter ECG measurement under the similar level of physical activity. The original 

ECG signals were digitized at 128 Hz, and the beat annotations were obtained by automated analysis 

with a manual review and correction.  

2.2. Method Description 

Figure 1 shows the block diagram of the analytical procedure used in the present study. This 

procedure consisted of four major steps. Step 1: Pre-processing for each RR interval recording; Step 2: 

Segmenting for each RR interval recording; Step 3: Entropy calculation for each RR segment, and Step 4: 

Comparison between NSR and CHF groups.  

In Step 1, the RR intervals greater than 2 s were firstly removed from the raw RR interval 

recordings to ignore the influence from the artifacts. For each beat in the raw ECG signals, it was 

annotated as a normal (denoted as ‘N’) or abnormal heartbeat. The abnormal heartbeats were usually 

caused by the ectopic beats such as supra-ventricular ectopic beats or ventricular ectopic beats, 

depending on the localization of the ectopic focus. The RR intervals formed from the abnormal 

heartbeats could confound the entropy analysis of HRV [24]. So these RR intervals were then removed 

from the RR interval recordings. Table 1 shows the total number of RR intervals for both NSR and 

CHF groups, as well as the numbers of RR intervals after these two removing procedures. 

In Step 2, we used two different length windows N to segment the long-term RR interval recordings 

to form the RR segments for the entropy calculation. In this study, we set N = 300 and N = 1000 

respectively to observe the performances of entropy measures for different length of RR segments. 
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Figure 1. Block diagram of the proposed analytical procedure. Four steps are 

progressively connected. NSR: normal sinus rhythm, CHF: congestive heart failure, CI: 

confidence interval. 

We did not consider the overlapping operation between adjacent N-length windows since the 

previous study reported that overlapping between adjacent N-length windows did not improve atrial 

fibrillation organization estimation with respect to the analysis of non-overlapping windows [16].  

Table 1 also shows the total numbers of RR segments for both NSR and CHF groups when setting N = 300 

and N = 1000 respectively. For each RR segment, we finally removed the RR intervals without 99% 

confidence interval (CI), i.e., mean ±3 × SD.  

In Step 3, SampEn and FuzzyMEn were used to calculate the entropy values for each RR segment 

under the different parameter settings: embedding dimension m was set as 1, 2, 3 and 4 respectively 
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and tolerance threshold r was set as 0.10, 0.15, 0.20 and 0.25 respectively. The detailed descriptions of 

SampEn and FuzzyMEn were summarized in the Appendix. 

In Step 4, the entropy results were compared between the NSR and CHF groups under the different 

combinations of parameters m, r and N, aiming to explore which combination of these parameters 

could make SampEn and FuzzyMEn have abilities to distinguish the CHF patients from the NSR 

subjects. Thus the appropriate parameter selection could be determined.  

Table 1. Statistical results of the numbers of RR interval recordings, RR intervals and RR 

segments from the 54 NSR and 29 CHF RR Interval Databases. 

Variables NSR group CHF group 

Name of RR interval recordings nsr001~nsr054 chf201~chf229 

No. of RR interval recordings 54 29 

No. of RR intervals 5,790,504 3,312,195 

No. of RR intervals after removing greater than 2 s 5,780,148 3,306,394 

No. of RR intervals after removing abnormal heartbeats 5,738,937 3,102,120 

No. of RR segments when setting N = 300 19,101 10,324 

No. of RR segments when setting N = 1,000 5,711 3,089 

2.3. Statistical Analysis 

In total, for each RR segment length of N = 300 and N = 1000, there were 32 entropy values from 

each RR segment (from two entropy methods, four embedding dimensions and four tolerance 

thresholds). The overall mean and SD values of SampEn and FuzzyMEn were calculated across all RR 

interval recordings, separately for the NSR and CHF groups. The non-parametric test was used to test the 

statistical difference between the two groups. All statistical analyses were performed using the SPSS 

software (Version 20, IBM, Armonk, NY, USA). Statistical significance was set a priori at p < 0.05.  

3. Results 

3.1. Effects of m and r on the Algorithm Distinguishing Ability for Two Groups when N = 300 

Table 2 gives an overview of SampEn and FuzzyMEn results for the two groups from the different 

combinations of (m, r) when setting N = 300. As shown in Table 2, SampEn had statistical 

significances only for m = 1, 2 and 3 combined with r = 0.10 and 0.15. However, FuzzyMEn had 

statistical significances for m = 1 and 2 whatever r was, and also had statistical significances at the 

combinations of (m = 3, r = 0.10), (m = 3, r = 0.15) and (m = 4, r = 0.10). The number of the combination 

of (m, r), which could statistically distinguish the two groups, was 6 for SampEn but was 11 for 

FuzzyMEn. Moreover, there were no SampEn outputs for the NSR group for m = 4 combined with  

r = 0.10, 0.15 or 0.20. However, FuzzyMEn output the entropy results at any combination of (m, r). In 

addition, SampEn values in the NSR group were larger than those in the CHF group when r = 0.10, 

0.15 and 0.20 but lower when r = 0.25. By contrast, FuzzyMEn values in the NSR group were 

consistently lower than those in the CHF group. 
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3.2. Effects of m and r on the Algorithm Distinguishing Ability for Two Groups when N = 1000 

Table 3 gives similar results to those of Table 2 when setting N = 1000. As shown in Table 3, 

compared with the results from N = 300, not only FuzzyMEn, but also SampEn could output the 

entropy results at any combination of (m, r). In addition, up to 11 combinations of (m, r) for SampEn 

had statistical significances for the two groups. However, these combinations showed weak regularity. 

Statistical significances occur for r = 0.10 and 0.25, but not 0.20. For comparison, the combinations of 

(m, r) for FuzzyMEn making the statistical significances were more regular than SampEn. FuzzyMEn 

still had statistical significances for m = 1 and 2 whatever r was, but did not have statistical 

significances at other combinations of (m, r). Furthermore, SampEn values in the NSR group were 

larger than those in the CHF group when r = 0.10 and 0.15 but lower when r = 0.20 and 0.25. By 

contrast, FuzzyMEn values in the NSR group were still consistently lower than those in the CHF group.  

3.3. Performance Test for the Entropy Methods Using Simulated Signals 

Fractional Brownian motion (fBm) signal is suggested as one of the most popular, simple, non-

stationary and normally distributed time series and is usually used as a simulation for physiological 

time series. In general, the fBm processes are considered in three different regions as 0 < H < 0.5, H = 0.5 

and 0.5 < H < 1 [25,26], where H is the self-similarity parameter, that is, the Hurst (H) parameter. 

With H increasing, fBm process becomes more regular. The detailed description for the fBm process 

can be found in References [25,26]. Herein, we used the function wfbm.m from the Matlab Wavelet 

Toolbox to generate the fBm signals with three different H parameters: 0.3, 0.5 and 0.7. We also 

generated the Gauss noise signals for comparison with the fBm signals. The analysis performed on the 

simulated signals was used to test whether the SampEn and FuzzyMEn have similar performances 

when compared with the MIT RR interval time series. 

Table 4 provides the results from the simulated signals. The mean and SD values were from the 20 

repeats for each signal type, in addition to each combination of (m, r) when setting the time series 

length N = 300. From Table 4, for both SampEn and FuzzyMEn, Gauss noises had the largest entropy 

values for each combination of (m, r), indicating the most irregular of the Gauss noises. With the H 

increasing for the fBm process, both SampEn and FuzzyMEn had a decline trend, suggesting the 

increase of regularity of the fBm signals. SampEn still had the invalid values when setting a large 

parameter m and small parameter r. However, FuzzyMEn could always output the valid entropy values 

for any combination of (m, r). 

4. Discussion 

The motivation of this study was based on the fact that no generalized guidelines exist for the 

appropriate parameters selection of m, r and N when SampEn and FuzzyMEn were applied to 

distinguish CHF patients from NSR subjects in clinical application, especially for our new proposed 

FuzzyMEn method.  
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Table 2. Results of SampEn and FuzzyMEn from the different combinations of embedding dimension m and tolerance threshold r when 

setting segment length N = 300. The parameter m changed from 1 to 4 with a step of 1 and r changed from 0.10 to 0.25 with a step of 0.05.  

p-value measured the statistical significance between the NSR and CHF groups at each combination of (m, r). 

Tolerance 
threshold 

Group 
Embedding dimension for SampEn Embedding dimension for FuzzyMEn 

m = 1 m = 2 m = 3 m = 4 m = 1 m = 2 m = 3 m = 4 

 NSR 1.95 ± 0.18 1.84 ± 0.17 1.63 ± 0.15 NaN −0.06 ± 0.20 1.40 ± 0.19 1.18 ± 0.15 1.08 ± 0.13 
r = 0.10 CHF 1.64 ± 0.30 1.51 ± 0.31 1.31 ± 0.23 1.09 ± 0.19 0.20 ± 0.37 1.63 ± 0.36 1.27 ± 0.23 1.18 ± 0.27 

 p-value 4 × 10−8 ** 7 × 10−8 ** 0.003 ** -- 4 × 10−5 ** 2 × 10−4 ** 0.042 * 0.027 * 

 NSR 1.73 ± 0.14 1.64 ± 0.13 1.54 ± 0.14 NaN −0.15 ± 0.19 1.18 ± 0.18 1.00 ± 0.13 0.92 ± 0.12 
r = 0.15 CHF 1.55 ± 0.23 1.44 ± 0.31 1.29 ± 0.21 1.08 ± 0.19 0.10 ± 0.34 1.40 ± 0.34 1.08 ± 0.20 0.99 ± 0.24 

 p-value 2 × 10−5 ** 5 × 10−6 ** 0.003 ** -- 3 × 10−5 ** 2 × 10−4 ** 0.047 * 0.054 

 NSR 1.49 ± 0.15 1.40 ± 0.14 1.32 ± 0.16 NaN −0.20 ± 0.17 1.05 ± 0.16 0.89 ± 0.12 0.82 ± 0.11 
r = 0.20 CHF 1.45 ± 0.18 1.34 ± 0.18 1.25 ± 0.18 1.12 ± 0.20 0.03 ± 0.32 1.25 ± 0.32 0.96 ± 0.21 0.88 ± 0.21 

 p-value 0.26 0.10 0.11 -- 3 × 10−5 ** 3 × 10−4 ** 0.061 0.079 

 NSR 1.28 ± 0.15 1.19 ± 0.14 1.14 ± 0.15 1.01 ± 0.09 −0.24 ± 0.16 0.95 ± 0.15 0.80 ± 0.12 0.74 ± 0.10 
r = 0.25 CHF 1.33 ± 0.17 1.23 ± 0.17 1.17 ± 0.17 1.10 ± 0.17 −0.02 ± 0.30 1.13 ± 0.30 0.87 ± 0.19 0.79 ± 0.19 

 p-value 0.14 0.35 0.50 0.39 4 × 10−5 ** 4 × 10−4 ** 0.063 0.10 

Data are expressed as number or mean ± standard deviation (SD). “*”: statistical significance p < 0.05, “**”: statistical significance p < 0.01. NaN means that there 

were no SampEn outputs for the present combination of m and r. 
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Table 3. Results of SampEn and FuzzyMEn from the different combinations of embedding dimension m and tolerance threshold r when 

setting segment length N = 1,000. The parameter m changed from 1 to 4 with a step of 1 and r changed from 0.10 to 0.25 with a step of 0.05. 

p-value measured the statistical significance between the NSR and CHF groups at each combination of (m, r). 

Tolerance 
threshold 

Group 
Embedding dimension for SampEn Embedding dimension for FuzzyMEn 

m = 1 m = 2 m = 3 m = 4 m = 1 m = 2 m = 3 m = 4 

 NSR 1.91 ± 0.16 1.80 ± 0.15 1.72 ± 0.14 1.58 ± 0.12 −0.26 ± 0.19 1.17 ± 0.19 0.99 ± 0.15 0.90 ± 0.13 
r = 0.10 CHF 1.66 ± 0.27 1.53 ± 0.29 1.43 ± 0.27 1.27 ± 0.21 −0.01 ± 0.35 1.38 ± 0.35 1.07 ± 0.24 0.97 ± 0.25 

 p-value 7 × 10−7 ** 3 × 10−7 ** 8 × 10−9 ** 5 × 10−6 ** 7 × 10−5 ** 6 × 10−4 ** 0.079 0.10 

 NSR 1.61 ± 0.16 1.50 ± 0.15 1.43 ± 0.15 1.35 ± 0.14 −0.33 ± 0.17 0.98 ± 0.17 0.83 ± 0.13 0.76 ± 0.11 
r = 0.15 CHF 1.53 ± 0.19 1.40 ± 0.20 1.33 ± 0.20 1.24 ± 0.19 −0.10 ± 0.32 1.16 ± 0.32 0.90 ± 0.22 0.81 ± 0.21 

 p-value 0.055 0.013 * 0.008 ** 0.013 * 6 × 10−5 ** 0.001 ** 0.093 0.15 

 NSR 1.33 ± 0.16 1.23 ± 0.15 1.16 ± 0.15 1.11 ± 0.15 −0.36 ± 0.16 0.86 ± 0.16 0.73 ± 0.12 0.67 ± 0.10 
r = 0.20 CHF 1.39 ± 0.17 1.27 ± 0.17 1.19 ± 0.17 1.13 ± 0.17 −0.15 ± 0.30 1.02 ± 0.29 0.79 ± 0.20 0.71 ± 0.19 

 p-value 0.091 0.31 0.46 0.57 7 × 10−5 ** 0.001 ** 0.098 0.19 

 NSR 1.11 ± 0.15 1.02 ± 0.13 0.96 ± 0.13 0.92 ± 0.13 −0.38 ± 0.14 0.77 ± 0.14 0.66 ± 0.11 0.60 ± 0.09 
r = 0.25 CHF 1.25 ± 0.19 1.13 ± 0.18 1.06 ± 0.18 1.01 ± 0.18 −0.19 ± 0.28 0.92 ± 0.27 0.71 ± 0.18 0.63 ± 0.17 

 p-value 3 × 10−4 ** 0.003 ** 0.007 ** 0.015 * 7 × 10−5 ** 0.002 ** 0.10 0.23 

Data are expressed as number or mean ± standard deviation (SD). “*”: statistical significance p < 0.05, “**”: statistical significance p < 0.01. 
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Table 4. Results of SampEn and FuzzyMEn for the simulated Gauss and fractional Brownian motion (fBm) signals from the different 

combinations of (m, r) when setting N = 300. The mean and standard deviation (SD) values were from 20 repeats for each type of signal.  

Tolerance 
threshold 

Signal 
Embedding dimension for SampEn Embedding dimension for FuzzyMEn 

m = 1 m = 2 m = 3 m = 4 m = 1 m = 2 m = 3 m = 4 

r = 0.10 

Gauss noise 2.88 ± 0.08 3.01 ± 0.38 NaN NaN 1.31 ± 0.03 2.92 ± 0.07 2.64 ± 0.08 2.49 ± 0.14 
fBm (H = 0.3) 1.82 ± 0.29 1.84 ± 0.35 NaN NaN −0.50 ± 0.28 1.03 ± 0.36 0.92 ± 0.32 0.86 ± 0.31 
fBm (H = 0.5) 1.31 ± 0.31 1.31 ± 0.32 1.34 ± 0.40 NaN −0.90 ± 0.15 0.54 ± 0.22 0.51 ± 0.21 0.49 ± 0.19 
fBm (H = 0.7) 0.45 ± 0.24 0.45 ± 0.24 0.44 ± 0.23 0.42 ± 0.22 −1.20 ± 0.14 0.14 ± 0.09 0.14 ± 0.09 0.14 ± 0.09 

r = 0.15 

Gauss noise 2.48 ± 0.07 2.47 ± 0.22 NaN NaN 1.11 ± 0.04 2.57 ± 0.07 2.30 ± 0.07 2.17 ± 0.07 
fBm (H = 0.3) 1.46 ± 0.32 1.43 ± 0.32 1.38 ± 0.30 1.36 ± 0.31 −0.51 ± 0.31 0.87 ± 0.37 0.78 ± 0.33 0.74 ± 0.32 
fBm (H = 0.5) 0.78 ± 0.20 0.78 ± 0.21 0.75 ± 0.20 0.73 ± 0.20 −0.96 ± 0.08 0.30 ± 0.11 0.29 ± 0.10 0.28 ± 0.10 
fBm (H = 0.7) 0.36 ± 0.15 0.36 ± 0.15 0.36 ± 0.14 0.34 ± 0.14 −1.03 ± 0.16 0.13 ± 0.06 0.13 ± 0.06 0.14 ± 0.07 

r = 0.20 

Gauss noise 2.20 ± 0.04 2.22 ± 0.13 2.25 ± 0.49 NaN 0.98 ± 0.04 2.37 ± 0.07 2.09 ± 0.08 1.96 ± 0.08 
fBm (H = 0.3) 1.24 ± 0.23 1.21 ± 0.23 1.19 ± 0.23 1.22 ± 0.42 −0.53 ± 0.22 0.77 ± 0.26 0.68 ± 0.23 0.63 ± 0.22 
fBm (H = 0.5) 0.65 ± 0.31 0.65 ± 0.32 0.65 ± 0.33 0.65 ± 0.34 −0.88 ± 0.19 0.33 ± 0.21 0.31 ± 0.20 0.30 ± 0.19 
fBm (H = 0.7) 0.21 ± 0.11 0.21 ± 0.11 0.21 ± 0.11 0.20 ± 0.11 −1.05 ± 0.11 0.09 ± 0.05 0.09 ± 0.05 0.09 ± 0.05 

r = 0.25 

Gauss noise 1.97 ± 0.04 1.96 ± 0.10 2.01 ± 0.21 NaN 0.88 ± 0.04 2.21 ± 0.05 1.95 ± 0.05 1.82 ± 0.06 
fBm (H = 0.3) 1.02 ± 0.27 1.01 ± 0.27 1.01 ± 0.30 1.03 ± 0.33 −0.53 ± 0.22 0.67 ± 0.27 0.60 ± 0.25 0.56 ± 0.23 
fBm (H = 0.5) 0.50 ± 0.22 0.48 ± 022 0.48 ± 0.23 0.48 ± 0.24 −0.88 ± 0.12 0.26 ± 0.15 0.25 ± 0.14 0.24 ± 0.14 
fBm (H = 0.7) 0.16 ± 0.08 0.15 ± 0.09 0.15 ± 0.09 0.15 ± 0.09 −1.00 ± 0.13 0.08 ± 0.04 0.08 ± 0.05 0.08 ± 0.05 

Data are expressed as number or mean ± standard deviation (SD). NaN means that there were no SampEn outputs for the present combination of (m, r). 
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The present study was aimed to determine the appropriate parameters m, r, and N for SampEn and 

FuzzyMEn for analyzing both NSR and CHF RR time series signals; and to determine which 

algorithm provides the best discrimination between NSR and CHF groups. It was hypothesized that  

(1) the value of SampEn and FuzzyMEn would change as a function of parameters m, r, and N,  

(2) FuzzyMEn would demonstrate better relative consistency as compared to SampEn, and (3) both 

algorithms would able to discriminate between the two groups. The results fully supported hypotheses 1 

and 2 and only partially supported hypothesis 3. Overall the results demonstrate that both SampEn and 

FuzzyMEn are sensitive to the parameter selection for analyzing short RR interval time series and 

extreme caution should be paid when choosing appropriate parameters for distinguishing CHF patients 

from NSR subjects. 
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Figure 2. Feasible combinations (green grids) of (m, r) that would able to discriminate 

between NSR and CHF groups (p < 0.05) at different setting of time series length for 

SampEn (A1–A3) and FuzzyMEn (B1–B3) respectively: (A1 and B1) N = 300 and (A2 

and B2) N = 1000. (A3) and (B3) show that the feasible combinations (highlighted green 

grids) would able to discriminate between the two groups at the setting of both N = 300 

and N = 1000. 
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With regard to the appropriate parameter values for m and r, developed experiments showed that 

significantly statistical differences between NSR and CHF groups can be reached through not only 

one, but also several combinations of (m, r) for both SampEn and FuzzyMEn. Figure 2 shows the 

feasible combinations (green grids) of (m, r) that would able to discriminate between NSR and CHF 

groups (p < 0.05) at different setting of time series length for SampEn (A1–A3) and FuzzyMEn (B1–B3) 

respectively. Figure 2(A3,B3) show that the feasible combinations (highlighted green grids) would 

able to discriminate between the two groups at the setting of both N = 300 and N = 1000. All figures 

show a remarkable region in which a statistical significance for the two groups was reached. An 

interesting observation is that the feasible combinations of (m, r) in SampEn region was relatively 

narrow and was not agree with the typically recommended in the literature [3] with r between 0.10 and 

0.25. These feasible combination regions in SampEn show a worse regularity than those in FuzzyMEn. 

The distinguishing ability for the two groups in SampEn disappeared when r switched from 0.15 to 

0.20, suggesting that SampEn with the typical r setting of 0.2 may not be the best. Choosing a higher r 

of 0.25 then the distinguishing ability becomes unstable with respect to the different time series length, 

consistent with the previous reports [27]. In addition, choosing a smaller r could lead to an increased 

number of self-matching for SampEn. This suggests that choosing parameter values for SampEn 

should be meticulous and even hard, especially for r.  

However, FuzzyMEn shows a better regularity for the selection of parameters m and r. FuzzyMEn 

can significantly distinguish the two groups for m = 1 and 2 whatever r is. Therefore the selection of 

appropriate parameters m and r is much easier in our proposed FuzzyMEn method than that in 

SampEn. It could be suggested that the selection of m between 1 and 2 and r between 0.10 and 0.25 in 

FuzzyMEn would probably yield fine classification results between NSR and CHF groups. This result 

supports our hypothesis that FuzzyMEn would demonstrate better relative consistency as compared to 

SampEn and agrees the previous conclusion that the selection of r for SampEn appears to be more 

difficult than the selection of m [10,11,18].Typically it is suggested that for clinical data, m is to be set 

at 2 for SampEn [2,12]. Besides, an m of 3 has been found to be acceptable for SampEn in [8]. Our 

present study partly support this point since SampEn had a similar performance between m = 2 and  

m = 3. However, m = 3 is not suitable for the FuzzyMEn method since the distinguishing ability totally 

loses in FuzzyMEn when m = 3. In addition, we should note that choosing the frequently utilized m = 2 

will allow comparison of study results to previously published findings. Yet, a choice of the 

appropriate parameter combinations for individual time series may yield an m value that is different 

from 2. 

Previous study reported that the time series length N did not have a great impact on SampEn if  

N > 200 [2,10] but had a great impact if N is less than 200 [12]. Stabilization in entropy would be 

expected with greater N. In the current study, we set N equaled 300 and 1000 respectively and 

observed the performances of SampEn and FuzzyMEn did not change a lot from N = 300 to N = 1000. 

It is also verify that the sensitivity of entropy measures to parameter N would plateau at a certain level. 

Nevertheless, it must be kept in mind that the drift in the time series may increase with an increasing N 

needed and that this drift would have an effect on entropy calculations [27]. 

For a special value of m = 1 or m = 2, why can FuzzyMEn be able to significantly discriminate two 

groups at any setting of parameter r but SampEn cannot? From Table 2 and 3, we could explain that 

the reason mainly exist in the SampEn algorithm itself. With the parameter r increasing, SampEn 
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values were firstly larger in the NSR group but then changed to be larger in the CHF group. The weak 

consistency of SampEn values presented here makes it is hard to select the appropriate and valuable 

parameter combination for clinical application. However, from Table 2 and 3, we observed that 

FuzzyMEn showed better consistency: the results in the NSR group were consistently lower than those 

in the CHF group and there were significant differences between the two groups for m = 1 or m = 2 

whenever which parameter r was chose.  

With regard to the weak consistency of SampEn, it is mainly due to the decision rule for vector 

similarity, which using the traditional Heaviside function. In FuzzyMEn, fuzzy function is used to 

redefine the decision rule for vector similarity. The differences between Heaviside and fuzzy functions 

are shown in Formula (1) and Figure 3. The rigid membership degree determination in Heaviside 

function could induce the weak consistency of SampEn, which means that the entropy value may have 

a sudden change when parameter r changes slightly. This phenomenon has been reported in the recent 

studies [7,19,22]. For fuzzy function, this determination criterion exhibits the gentle boundary effect, 

while the traditional 0-1 judgment criterion of Heaviside function is rigid in the boundary of parameter r. 

Besides, FuzzyMEn also uses the information from both local and global vector sequences by 

removing both local baseline and global mean values by Formula (A4) (see Appendix), thus inducing 

the fact that FuzzyMEn have better consistency than SampEn:  

( )

,

,
,

,

,

1
For Heaviside function : Membership_degree( , )

0

For Fuzzy function : Membership_degree( , ) exp

i j

i j
i j

n

i j

i j

d r
d r

d r

d
d r

r

≤
=  >
 
 = −
 
 

 (1)

where ,i jd  means the distance of two vectors iX  and jY , with r as the tolerate threshold and n is the 

vector similarity weight. 

It is known that a key step for either ApEn or SampEn is the selection of the threshold r. However, 

a constant r was recently found problematic in a similarity judgment, particularly for fast dynamic 

series [15,22]. Some selection methods for dynamic threshold were proposed to replace the constant r. 

A typical example for ApEn was from the study of Lu et al, regarding the threshold r from 0.01 to 1.0 

times of standard deviation of time series maximizing ApEn as the optimal r [15]. A typical example for 

SampEn was from the study of Castiglioni et al, estimating SampEn over wide ranges of r (0.01 ≤ r ≤ 5) 

for determining the optimal r [17]. However, the maximum methods for determining r for both ApEn 

and SampEn are also based on the Heaviside function, which judges two vectors as either “similar” or 

“dissimilar”, without any intermediate states; this could result in the poor statistical stability for 

entropy estimates. Our previous study have shown that using the maximum method for determining r 

did not achieved better results that using the constant r [18]. So, in the current study, the constant r 

values were still employed.  
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Figure 3. The changing curve of the membership degree with the increase of normalized 

distance between two vectors. Black dotted line shows the determination criterion of the 

Heaviside function and blue dash line shows the determination criterion of the fuzzy function. 

There are several limitations in this study. First, we set the threshold parameter r as 0.10, 0.15, 0.20 

and 0.25 with a step of 0.05. We did not observe the effects from the in-between r values. This coarse 

granularity of r should be a limitation of the current study. Second, it is also worth noting that the 

parameter settings for the FuzzyMEn method are (from the Appendix section): the local similarity 

weight nL = 3, the global vector similarity weight nG = 2, and the local tolerance threshold rL was set 

equal to the global threshold rG, that is, rL = rG = r based on our previous study [19]. The limitation 

resulting from the fixed parameter setting should be classified. If other parameter settings will output 

better results, this needs further verification. Third, from Tables 2 and 3, we noted that FuzzyMEn 

values are negative for m = 1, while the traditional SampEn usually outputs positive values. This is 

because SampEn estimates the increasing rate of new patterns by essentially comparing the maximum 

absolute distance between the two vectors when the embedding dimension changes from m to m + 1. 

From the definition of the maximum absolute distance ( ) ( )
1

,
0

, max
m

m m m
i j i j

k
d d X X x i k x j k

−

=
 = = + − +   (also 

see formula (A2) in Appendix), ,
m
i jd  will monotonically increase to 1

,
m
i jd +  when m becomes to m + 1, 

resulting in the monotonical increase of SampEn for any parameter m—certainly for m = 1. However, 

FuzzyMEn both includes the fuzzy local measure entropy (FuzzyLMEn) and fuzzy global measure 

entropy (FuzzyGMEn). When computing the FuzzyLMEn, vectors were firstly removed the local 
baseline (see formula (A4) in Appendix) and then were calculated the distance. So when setting m = 1, ,

m
i jd  is 

defined as 1
, | ( ) ( ) |i jd x i x j= −  and 1

,
m
i jd +  is defined as ( ) ( )

1
2
,

0
max ( ( )) ( ( ))i j

k
dL x i k x i x j k x j

=
= + − − + − , where 

( )x i  is mean value of vector ( ) ( ){ }, 1x i x i +  and ( )x j  is mean value of vector ( ) ( ){ }, 1x j x j + . Thus, 
1
,i jd  is not larger, but is usually smaller than 2

,i jd , resulting in the decrease of FuzzyLMEn when m = 1 

becomes to m + 1, and resulting in the negative values of FuzzyMEn when setting m = 1. Finally, we 

observed the performances of the different parameter combinations for only the NSR and CHF 

subjects. The optimal (m, r) values recommended by this study could not be directly used to analyze 
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other heart-rhythm alterations different from the CHF. In any case, different choices of (m, r) may 

make the entropy estimates sensitive to other choices of (m, r) for distinguishing the two groups, but these 

different choices do not directly reflect the unpredictability of their time series. Further research should 

confirm the parameters’ performances on other physiological or pathological databases and confirm the 

relationships between the entropy values and the regularity/unpredictability of the time series.  

To summarize, the present study has demonstrated that the selection of m, r and N plays a critical 

role in determining the outcomes of SampEn and FuzzyMEn when applied to short-term physiological 

time series. It has proved that the parameter range typically recommended and used in the literature 

may not be appropriate for the special clinical applications. In this study, it could be suggested that the 

selection of m of 2 and 3 and r of 0.10 and 0.15 for SampEn and the selection of m of 1 and 2 whenever r 

is for FuzzyMEn would probably yield fine classification results for the NSR and CHF subjects. These 

parameters for FuzzyMEn were merely valid in context with the chosen values of nL = 3, nG = 2, and  

rL = rG = r. Furthermore, the findings of this work will be incorporated in the follow-up studies. 
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Appendix 

A1. Sample Entropy (SampEn) 

The calculation process of SampEn was summarized as follows [2,28]: 
For RR segment ( )x i  (1 i N≤ ≤ ), given the parameters m and r, first form the vector sequences m

iX : 

( ) ( ) ( ){ }, 1 , , 1m
iX x i x i x i m= + + −  1 i N m≤ ≤ −  (A1) 

The vector m
iX  represents m consecutive ( )x i  values. Then the distance between m

iX  and m
jX  based 

on the maximum absolute difference is defined as: 

( ) ( )
1

,
0

, max
m

m m m
i j i j

k
d d X X x i k x j k

−

=
 = = + − +   (A2) 
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For each m
iX , denote ( )m

iB r  as 1( )N m −−  times the number of m
jX  (1 j N m≤ ≤ − ) that meets ,

m
i jd r≤ . 

Similarly, set ( )m
iA r  is 1( )N m −−  times the number of 1m

jX +  that meets 1
,
m
i jd r+ ≤  for all 1 j N m≤ ≤ − . 

Then SampEn is defined by: 

( ) ( ) ( )( )
1 1

SampEn , , ln /
N m N m

m m
i i

i i
m r N A r B r

− −

= =
= −    (A3) 

A2. Fuzzy Measure Entropy (FuzzyMEn) 

The calculation process of FuzzyMEn was summarized as follows [7,19]: 
For RR segment ( )x i  ( 1 i N≤ ≤ ), first form the local vector sequences m

iXL  and global vector 

sequences m
iXG  respectively: 

( ) ( ) ( ){ }
( ) ( ) ( ){ }

, 1 , , 1 ( )

, 1 , , 1

m
i

m
i

XL x i x i x i m x i

XG x i x i x i m x

= + + − −

= + + − −




 1 i N m≤ ≤ −  (A4) 

The vector m
iXL  represents m consecutive ( )x i  values but removing the local baseline ( )x i , which is 

defined as: 

1

0

1
( ) ( )

m

k
x i x i k

m

−

=
= +  1 i N m≤ ≤ −  (A5) 

The vector m
iXG  also represents m consecutive ( )x i  values but removing the global mean value x  

of the segment ( )x i , which is defined as: 

1

1
( )

N

i
x x i

N =
=   (A6) 

Then the distance between the local vector sequences m
iXL  and m

jXL  and the distance between the 

global vector sequences m
iXG  and m

jXG  are defined respectively: 

( ) ( )

( ) ( )

1

,
0

1

,
0

, max ( ( )) ( ( ))

, max ( ) ( )

m
m m m
i j i j

k

m
m m m
i j i j

k

dL d XL XL x i k x i x j k x j

dG d XG XG x i k x x j k x

−

=

−

=

 = = + − − + − 

 = = + − − + − 

 (A7) 

Given the parameters nL, rL, nG and rG, calculate the similarity degree , ( , )m
i j L LDL n r  between the local 

vectors m
iXL  and m

jXL  by the fuzzy function ,( , , )m
i j L LL dL n rμ , in addition, calculate the similarity degree 

, ( , )m
i j G GDG n r  between the global vectors m

iXG  and m
jXG  by the fuzzy function ,( , , )m

i j G GG dG n rμ : 

,
, ,

,
, ,

( )
( , ) ( , , ) exp( )

( )
( , ) ( , , ) exp( )

L

G

nm
i jm m

i j L L i j L L
L

nm
i jm m

i j G G i j G G
G

dL
DL n r L dL n r

r

dG
DG n r G dG n r

r

μ

μ

= = −

= = −

 (A8) 

Define the function ( , )m
L LL n rφ  and ( , )m

G GG n rφ  as: 

,
1 1

,
1 1

1 1
( , ) ( ( , ))

1 1
( , ) ( ( , ))

N m N m
m m

L L i j L L
i j

N m N m
m m

G G i j G G
i j

L n r DL n r
N m N m

G n r DG n r
N m N m

φ

φ

− −

= =

− −

= =

=  
− −

=  
− −

 (A9) 
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Similarly, define the function 1( , )m
L LL n rφ + for 1m +  dimension vectors 1m

iXL +  and 1m
jXL +  and the 

function 1( , )m
G GG n rφ +  for 1m +  dimension vectors 1m

iXG +  and 1m
jYG + : 

1 1
,

1 1

1 1
,

1 1

1 1
( , ) ( ( , ))

1 1
( , ) ( ( , ))

N m N m
m m

L L i j L L
i j

N m N m
m m

L L i j G G
i j

L n r DL n r
N m N m

G n r DG n r
N m N m

φ

φ

− −+ +

= =

− −+ +

= =

=  
− −

=  
− −

 (A10) 

Then the fuzzy local measure entropy (FuzzyLMEn) and the fuzzy global measure entropy 

(FuzzyGMEn) are defined by: 

( ) ( )
( ) ( )

1

1

FuzzyLMEn , , , ln ( , ) / ( , )

FuzzyGMEn , , , ln ( , ) / ( , )

m m
L L L L L L

m m
G G G G G G

m n r N L n r L n r

m n r N G n r G n r

φ φ

φ φ

+

+

= −

= −
 (A11) 

Finally, the FuzzyMEn of RR segment ( )x i is calculated as follows: 

( ) ( ) ( )FuzzyMEn , , , , , FuzzyLMEn , , , FuzzyGMEn , , ,L L G G L L G Gm n r n r N m n r N m n r N= +  (A12) 

In this study, with the local similarity weight nL = 3 and global vector similarity weight nG = 2, the 

local tolerance threshold rL was set equal to the global threshold rG, that is, rL = rG = r based on our 

previous study [19]. So the formula (A12) becomes: 

( ) ( ) ( )FuzzyMEn , , FuzzyLMEn , , FuzzyGMEn , ,m r N m r N m r N= +  (A13) 

For both SampEn and FuzzyMEn, the entropy results were only based on the three parameters: 

embedding dimension m, tolerance threshold r and RR segment length N. 
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