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Abstract Premature ventricular contraction (PVC) may
lead to life-threatening cardiac conditions. Real-time auto-
mated PVC recognition approaches provide clinicians the
useful tools for timely diagnosis if dangerous conditions
surface in their patients. Based on the morphological dif-
ferences of the PVC beats in the ventricular depolar-
ization phase (QRS complex) and repolarization phase
(mainly T-wave), two beat-to-beat template-matching pro-
cedures were implemented to identify them. Both tem-
plates were obtained by a probability-based approach and
hence were fully data-adaptive. A PVC recognizer was then
established by analyzing the correlation coefficients from
the two template-matching procedures. Our approach was
trained on 22 ECG recordings from the MIT-BIH arrhyth-
mia database (MIT-BIH-AR) and then tested on another 22
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nonoverlapping recordings from the same database. The PVC
recognition accuracy was 98.2 %, with the sensitivity and
positive predictivity of 93.1 and 81.4 %, respectively. To eval-
uate its robustness against noise, our approach was applied
again to the above testing set, but this time, the ECGs were not
preprocessed. A comparable performance was still obtained.
A good generalization capability was also confirmed by val-
idating our approach on an independent St. Petersburg Insti-
tute of Cardiological Technics database. In addition, our
performance was comparable with these published com-
plex approaches. In conclusion, we have developed a low-
complexity data-adaptive PVC recognition approach with
good robustness against noise and generalization capability.
Its performance is comparable to other state-of-the-art meth-
ods, demonstrating a good potential in real-time application.

Keywords Electrocardiogram (ECG) · Premature
ventricular contraction (PVC) · Low-complexity ·
Data-adaptive · Template matching

1 Introduction

Portable ambulatory ECG monitoring has attracted more and
more attentions because it well meets the growing clinical
needs for personal healthcare, remote monitoring, point-of-
care diagnosis, etc. [1,2]. It demands for fast ECG signal
analysis methods so as to help clinicians to diagnose danger-
ous cardiac conditions in real-time. The immediate detection
of life-threatening cardiac arrhythmias is exactly one critical
aspect, premature ventricular contraction (PVC) in particu-
lar, which has already been showed to be linked to mortality
when associated with myocardial infarction [3]. Also, reject-
ing PVC beats is one essential step for heart rate variability
analysis [4,5].
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However, most recent studies focused on off-line algo-
rithms, and thus, they employed many complicated math-
ematical tools (wavelet transform, nonlinear complexity
measures, complicated artificial neural network, etc.) [6–16].
Their efficiency is generally accompanied by long compu-
tational time and high complexity. While portable ambula-
tory ECG device is usually battery-driven and runs under
an embedded development environment, their quite limited
computation resources require low-complexity real-time pro-
cedures.

There are also a couple of studies which reported real-time
approaches [17,18]. But their high accuracies were based on
relatively small data sets (Zhou [17] tested on 20 patients
and Hu [18] on 16 recordings). Their efficiency over a large
number of files is generally a difficult problem to address.
Therefore, the generalization capability of the signal process-
ing algorithms should also be seriously considered [6,12,16].
One approach is to increase the amount of training data. How-
ever, no matter how large the data set is, it is still not possible
to cover all the potential ECG features of the patients, and the
complexity of the classifier grows as the size of the training
data set grows [6]. A reasonable generalization capability
has been achieved by using a patient-adaptable procedure,
which combined a conventional global classifier with a cus-
tomized classifier developed from patient-specific ECG data
or on experts’ validation [6,12]. However, this approach is
again accompanied with high computational complexity.

The aim of this study is thus to develop a low-complexity
data-adaptive PVC recognition approach. Its robustness
against noise and generalization capacity will be assessed,

and its performance will also be compared with some pub-
lished off-line high-complexity approaches.

2 Methods

This study included four main stages, which are briefly
summarized in Fig. 1. The first stage was the training and
testing processes. The proposed algorithm was trained and
tested on two un-overlapping data sets (DS1 and DS2) from
the MIT-BIH arrhythmia database (MIT-BIH-AR) [19,20].
The second stage was to assess the robustness of algo-
rithm against noise. The PVC recognition was applied to
the un-preprocessed testing data set (DS2), with its perfor-
mance compared with that from the testing process in the
first stage. Next, to determine the generalization capabil-
ity of the algorithm, the developed algorithm was tested
on another independent database (the St. Petersburg Insti-
tute of Cardiological Technics (INCART) [19]). Finally, the
algorithm performance was compared with some previously
published studies [10,13,14,16].

2.1 ECG databases

The well-known MIT-BIH-AR database was used for train-
ing and testing purposes, and the INCART database for val-
idation. Note that only recordings of lead MLII or lead II in
the two databases were used in this study. All the databases
are freely available on PhysioNet [19], and their details are
briefly described below.

Fig. 1 Schematic representation of the different stages of this study
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2.1.1 MIT-BIH arrhythmia database (MIT-BIH-AR)

This database is comprised of 48 half-hour ECG record-
ings sampled at 360 Hz. Four recordings (102, 104, 107
and 217) with paced beats were discarded. The remain-
ing 44 recordings were divided into two sets—a training
set (DS1) and a testing set (DS2). For comparison pur-
pose, DS1 and DS2 were the same as in the published
studies [9,12,16]. The ventricular escape beats were also
classified as the PVC beats in this study, and the ventric-
ular flutter wave and the unclassifiable beats were discarded
[9,16]. The classification scheme and the number of PVC
and non-PVC beats in DS1 and DS2 are summarized in
Table 1.

2.1.2 INCART 12-lead arrhythmia database

This database consists of 75 annotated recordings extracted
from 32 Holter records. They are sampled at 257 Hz. Each
recording is 30 min long and contains 12 standard leads.
There are over 175,000 beat annotations, which were pro-
duced by an automatic algorithm and then corrected man-
ually [19]. None of the recordings has paced beats, and
most of them have PVC beats. The annotated number of
PVC and non-PVC beats from this database is also given
in Table 1.

2.2 Approaches to recognize PVC

2.2.1 Signal preprocessing

The ECG recordings of the INCART database were resam-
pled to 360 Hz with a tenth-order low-pass finite-impulse
response (FIR) filter [16] to match the MIT-BIH-AR data-
base, hence to simplify the subsequent preprocessing proce-

dures. All the recordings from both the MIT-BIH-AR and the
resampled INCART databases were then preprocessed using
median filter to remove the baseline wander and then a 12-tap
low-pass FIR filter to remove the unwanted power line and
high-frequency noise [9].

2.2.2 Data-adaptive procedure to determine two matching
templates

Template matching has been widely used to distinguish
the isolated waveforms from a cluster of similar ones.
The key to differentiating PVC beats from non-PVC beats
lies in the morphological differences in both the ventricu-
lar depolarization phase (QRS complex) and repolarization
phase (mainly the T-wave). For the PVC beats, the ampli-
tude of the QRS complex is either much larger or lower
than that of a normal sinus beat, and there is obvious dis-
tortion in the T-wave. Based on these differences, a nor-
mal QRS template (T1) and a normal cycle template (T2)
were used to identify PVC beats. The two templates were
determined by a probability-based data-adaptive approach
from the first 5 min of each ECG recording (learning
period of the algorithm). The detailed procedure is described
below.

(1) Determine the normal beat-to-beat interval range
The beat-to-beat time interval series was constructed
from the time difference between two consecutive anno-
tated fiducial points. Extremities were removed by the
3σ criterion. The time interval series was then sorted in
ascending order and divided into 5 successive subsets
with equal time duration. The number of points in each
subset was counted, and the normal beat-to-beat inter-
val range was determined from the subset having the
maximum points.

Table 1 Classification scheme and the number of PVC and non-PVC beats in the MIT-BIH-AR and the INCART databases

Dataset Recordings Non-PVC beats PVC beats Total

DS1 101, 106, 108, 109, 112, 114, 115, 116,
118, 119, 122, 124, 201, 203, 205,
207, 208, 209, 215, 220, 223, 230

47070 3782 50852

DS2 100, 103, 105, 111, 113, 117, 121, 123,
200, 202, 210, 212, 213, 214, 219,
221, 222, 228, 231, 232, 233, 234

46335 3213 49548

INCART I01–I75 155881 20011 175892

– Non-PVC PVC Discarded

Annotationa – N , L , R, a, F, J, A, S, j, e, nb V , Ec Others

a Annotated by expert cardiologist. Paced beat, ventricular flutter wave and unclassifiable beats are discarded
b N , L , R, a, F, J, A, S, j, e and n refer to normal beat, left bundle branch block beat, right bundle branch block beat, aberrated atrial premature
beat, fusion of ventricular and normal beat, nodal premature beat, atrial premature beat, supraventricular premature beat, nodal escape beat,
atrial escape beat and supraventricular escape beat, respectively
c V and E refer to PVC and ventricular escape beat, respectively
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(2) Determine the normal waveform amplitude range
The determination of normal waveform amplitude range
was the same as that for the normal beat-to-beat inter-
val range. The amplitude (the absolute amplitude of the
fiducial point) series was sorted in ascending order and
then divided into 5 successive subsets with equal ampli-
tude range. The normal waveform amplitude range was
finally determined from the subset having the maximum
points.

(3) Construct T1 and T2
The first beat that fell within the above two normal
ranges was identified with its corresponding start and
end points of the QRS determined using a derivative-
based method. The ECG episode between the start and
end points of the QRS was regarded as T1 for that record-
ing, and T2 was determined from the episode between
the two fiducial points from the above first beat and its
following beat.

2.2.3 PVC recognition by template matching

Beat-to-beat template matching was operated every 5 s ECG
with an overlap of 1 s using a normalized correlation coeffi-
cient as Eq. (1).

xk (or yk) =
∑L−1

n=0

[
bk (n) − bk

] [
N (n) − N

]

√
∑L−1

n=0

[
bk (n) − bk

]2 [
N (n) − N

]2
(1)

(1) For x, bk (n) is the QRS complex in the kth beat, L is
the length of the predetermined T1 (N (n) in the equation),
bk and N are the average of bk (n) and N (n), respectively.
Note that when performing this matching, the fiducial point
of each beat was aligned to that of T1, and the start and end
of the QRS complex of that beat was determined accord-
ing to the length of T1. Therefore, the length of bk (n) is
also L .

(2) For y, bk (n) is the episode between the fiducial points
of the kth and k + 1th beats, L is the length of T2 (N (n)

in the equation), and bk and N are the average of bk (n)

and N (n), respectively. However, the length of bk (n) is not
always the same to L (due to heart rate variability), and
an interval stretching-compressing process [21,22] was thus
applied. Let Lk be the length of bk (n) in the kth beat. The
ratio of Lk and L is defined as the compressing-stretching
factor αk . For each beat, a compressing-stretching waveform
b̃k (n) is calculated as:

b̃k (n) = bk [1 + αk (n − 1)] (2)

wherein n = 1, 2, . . . , L , and the value for bk

[1+αk (n−1)] is determined as the interpolation between
bk [�1 + αk (n − 1)�] and bk [�1 + αk (n − 1)�] or the
extrapolation if 1 + αk (n − 1) is larger than Lk . b̃k (n) is
used as a substitution of bk (n) in Eq. (1).

The correlation coefficient between the PVC beats and
T1 (or T2) is low. Let the z-axis in a Cartesian coor-
dinate system indicates the quantized class index which
has a higher value if the beat is more similar to a non-
PVC beat and a lower one if it is more similar to a PVC
beat. The outcomes of the two template-matching proce-
dures act as the x-axis and y-axis. The projections on both
z versus x plane and z versus y plane are monotonously
increased. Moreover, we preferred to range the beat into
PVC class as long as one coefficient (matching with T1 or
T2) is lower. Thus, the slope of the projections should be
increased with the increase in x or y. The exponential func-
tion is a good representation for both projections and the
classification function z = f (x, y), which could be thus
expressed as:

zk = f (xk, yk) = exr
k + e

yr
k

2e
(3)

The unknown parameter r determines the increasing rate
of the slope. The denominator 2e is for normalization.
The recognition was then simply fulfilled by a comparison
between zk and a threshold value, denoted as zthre. The kth
beat is recognized as a non-PVC beat if zk ≥ zthre, and a
PVC beat otherwise. Figure 2 illustrates how the recognizer
performs. The ECG episodes are selected from the recording
119 in MIT-BIH-AR.

2.2.4 Determination of the threshold value zthre

The selection of the threshold value zthre plays an important
role in developing the above PVC recognizer, which was the
main purpose of the training process. The PVC recognition
performances in the training data set (DS1) of MIT-BIH-
AR were obtained for different r (1, 2, 3, 4, 5 and 10 were
assigned in this study) in the classification function and dif-
ferent thresholds. They were then compared with the cardi-
ologist’s annotations, with the sensitivity (proportion of true
negatives in all non-PVC beats, see Table 2) and specificity
(proportion of true positives in all PVC beats) calculated.
A receiver operating characteristic (ROC) curve, a graphical
plot of the sensitivity and 1-specificity, was then employed to
determine the optimal threshold. This procedure was carried
out using the SPSS software (version 19, SPSS Inc., USA).

Table 3 shows the recognition performance in DS1
with different values of r . The optimal threshold value
for a certain r value is also given. Overall, the most
acceptable performance was obtained with r = 4 or 5.
Their corresponding optimal thresholds zthre were 0.59
and 0.55, respectively. The optimal threshold zthre of 0.55
was finally chosen in this study, which is also shown in
Fig. 2.
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Fig. 2 Illustration of the PVC
recognizer. The lower panel
shows the classification function
as in Eq. (3) when r = 5. The
ECG episode was from
recording 119 in MIT-BIH-AR.
Three beats (a, b, c) in the ECG
episode and their projections in
the classification function are
marked

Table 2 Performance measures used in this study

Our approach Measures

n v Total Non-PVC beats PVC beats

Annotation

N Nn (TN) Nv (FP) A = Nn + V v

Nn + Nv + V n + V v
Se = Nn

Nn + Nv
Se = V v

V n + V v

V V n (FN) V v (TP) +P = Nn

Nn + V n
+P = V v

Nv + V v

N Non-PVC beats (true), V PVC beats (true), n non-PVC beats (recognized), v PVC beats (recognized), Nn (TN) non-PVC beats recognized as
non-PVC beats (true negatives), Nv (FP) non-PVC beats recognized as PVC beats (false positives), V n (FN) PVC beats recognized as non-PVC
beats (false negatives), V v (TP) PVC beats recognized as PVC beats (true positives), A Accuracy, Se sensitivity, +P positive predictivity

2.3 Performance quantification

The performance of the proposed recognizer was quanti-
fied by accuracy (A), sensitivity (Se) and positive predic-
tivity (+P). Table 2 shows how they are calculated in this
study.

2.4 Validation and comparison

2.4.1 Validation of the proposed recognizer

After the training process, as shown in Fig. 1, the perfor-
mance of the developed recognizer was evaluated in the DS2
of the MIT-BIH-AR and the INCART database. The indepen-

dent INCART database was used to assess the generalization
capability of the PVC recognizer. Additionally, DS2 was also
reused to test the ability of robustness against the noise of the
PVC recognizer.

2.4.2 Comparison with published studies

Our performance results were finally compared with 4
published studies where the entire or part of MIT-BIH-
AR and INCART databases were used [10,13,14,16]. The
ECG recordings in common with [10,13,14,16] were used,
respectively. Their performance results from our approach
were compared directly with the corresponding reported
results.
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Table 3 Overall performance in
the training set (DS1) using
different values of r in the
classification function (zthre
provided here is the optimal
threshold value at a certain r )

The performances are expressed
in percentages
A Accuracy, Se sensitivity, +P
positive predictivity

r zthre A Non-PVC beats PVC beats

Se +P Se +P

1 0.82 92.1 92.0 99.5 93.7 48.4

2 0.72 92.3 92.0 99.6 95.6 49.0

3 0.64 93.2 93.0 99.6 95.0 52.3

4 0.59 93.2 93.0 99.6 95.0 52.4

5 0.55 93.2 93.1 99.6 95.2 52.5

10 0.45 93.0 92.8 99.5 94.7 51.5

3 Results

Table 4 shows the PVC recognition performance for each
recording from DS1 and DS2. Table 5 shows the overall vali-
dation results of the developed approach, including the results
from the testing process using DS2 [Table 5(a)], the assess-
ment of the robustness against noise using un-preprocessed
DS2 [Table 5(b)] and the generalization evaluation using the
INCART database [Table 5(c)]. An overall accuracy (A) was
98.2 %, with sensitivity (Se) 98.5 % and positive predictiv-
ity (+P) 99.5 % for non-PVC beats, and Se 93.1 % and +P
81.4 % for PVC beats in DS2. For un-preprocessed DS2, a
small nonsignificant decrease was showed (A of 98.0 %; Se
98.4 % and +P 99.4 % for non-PVC beats, and Se 92.0 %
and +P 79.4 % for PVC beats). And comparable perfor-
mances were obtained from INCART database (A of 94.0 %;
Se 94.0 % and +P 99.1 % for non-PVC beats, and Se 93.4 %
and +P 66.5 % for PVC beats).

Table 6 shows the comparison with 4 published studies
[10,13,14,16], where the high-complexity approaches were
used. Again, with a much simpler approach in this study, the
comparable results were also obtained.

4 Discussion and conclusion

A low-complexity data-adaptive approach for PVC recogni-
tion has been proposed in this study. Computerized algo-
rithms for PVC recognition have been well established
for a few decades. To improve the accuracy, many com-
plicated mathematical tools have been investigated, and
currently, they are almost the dominant approaches. The
computational complexity might not be the key issue for off-
line ECG analysis. However, with the increasing demand
of the remote healthcare monitoring, the low complex-
ity is required in order to make real-time ECG acquisi-
tion and analysis feasible. The low-complexity approach
proposed here well meets the clinical needs. In addition,
generalization capability should also be seriously consid-
ered. We believed that it could be improved with a more

adaptive procedure. The results of this study validated this
hypothesis.

Two simple beat-by-beat template-matching processes
were employed to consider the ECG waveform morpholog-
ical differences between PVC and non-PVC beats. The first
one checks the QRS similarity and the second one mainly
the T-wave similarity. In theory, the correlation coefficients
from the two template-matching processes are very low if
it is a PVC beat and vice versa. The classification function
expressed in Eq. (3) shows a mutual mapping relationship
between the templates and the PVC and non-PVC beats.
An exponential map for the classification was used, and a
parameter r as given in Eq. (3) was used to adjust the slope
between the PVC region and the non-PVC region. Differ-
ent values of r were assessed in the training process. With
r ≥ 4, their performance varied slightly, and all of them
were indeed acceptable. In this study, r = 5 was finally
selected.

It has also been observed that the PVC recognizer per-
formed better in the testing data set (DS2) than that in the
training set (DS1) in terms of A, Se for non-PVC beats and
+P for PVC beats, while it was completely comparable in
terms of +P for non-PVC beats and Se for PVC beats. This
phenomenon agreed with what has been reported in [9,16].
It could be caused by a couple of reasons. Firstly, different
noise distribution and different amount of left bundle branch
block beats and right bundle branch block beats from the two
data sets might account for this bias. Secondly, the majority
of PVC beats were distributed in a few recordings in DS2.
However, it was much more spread in DS1.

The proposed approach has also been validated on an inde-
pendent INCART database. The results from the INCART
database suggested that our approach have a good gener-
alization capability. It could owe much to the fully data-
adaptive procedures we employed. The performance was
comparable to that in DS1, but a significant increase in +P
for PVC beats was observed. This could be explained by
the increased class imbalance of PVC beats in the DS1,
which is about 12-to-1, while in INCART database, it is
approximately 7-to-1.
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Table 4 Performance for each individual recording from DS1 and DS2

Rec. # Beats Measuresa

N V A Non-PVC beats PVC beats

Se +P Se +P

DS1

101 1858 0 100 100 100 − −
106 1503 518 98.8 98.9 99.9 98.7 96.8

108 1740 17 67.8 67.6 99.8 82.4 2.4

109 2487 37 99.9 100 99.9 91.9 100

112 2531 0 100 100 100 − −
114 1829 43 99.7 99.8 100 97.7 91.3

115 1946 0 100 100 100 − −
116 2295 109 99.0 99.0 100 99.1 82.4

118 2255 16 100 100 100 100 94.1

119 1537 444 100 100 100 100 100

122 2468 0 100 100 100 − −
124 1566 47 99.9 99.8 100 100 94.0

201 1761 198 96.2 95.7 100 100 92.5

203 2525 444 71.1 66.4 99.5 98.2 34.0

205 2577 71 100 100 100 100 98.6

207 1640 210 13.5 5.2 65.2 78.1 9.6

208 1955 989 95.2 92.9 99.9 99.8 87.7

209 2996 1 99.9 99.9 100 100 33.3

215 3189 164 99.3 99.8 99.5 89.6 96.1

220 2041 0 100 100 100 − −
223 2124 473 95.6 99.1 95.7 79.9 95.0

230 2247 1 100 100 100 100 100

Total 47070 3782 93.2 93.1 99.6 95.2 52.5

DS2

100 2264 1 100 100 100 100 100

103 2078 0 100 100 100 − −
105 2519 41 94.4 95.6 98.7 22.0 7.4

111 2117 1 87.4 87.4 100 100 0.4

113 1789 0 100 100 100 − −
117 1530 0 99.9 99.9 100 − 0

121 1855 1 99.7 99.7 100 100 14.3

123 1510 3 100 100 100 100 100

200 1767 826 96.8 99.3 96.2 91.5 98.3

202 2109 19 99.5 99.7 99.9 84.2 69.6

210 2449 193 98.6 99.3 99.9 90.2 90.6

212 2740 0 100 100 100 − 0

213 3021 220 97.9 97.8 99.9 98.6 76.7

214 1997 255 96.8 100 96.5 71.8 99.5

219 2084 63 99.3 100 99.3 77.8 98.0

221 2024 396 99.8 100 99.8 99.0 100

222 2474 0 96.7 96.7 100 − 0

228 1687 360 96.0 95.2 100 100 81.6

231 1563 2 99.1 99.1 100 100 12.5
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Table 4 continued

Rec. # Beats Measuresa

N V A Non-PVC beats PVC beats

Se +P Se +P

232 1776 0 99.8 99.8 100 − 0

233 2240 829 99.6 99.6 99.8 99.5 98.9

234 2742 3 100 100 100 100 100

Total 46335 3213 98.2 98.5 99.5 93.1 81.4

N Non-PVC beats (true), V PVC beats (true), A Accuracy, Se sensitivity, +P positive predictivity, Rec. recordings
a The measures are expressed in percentages

Table 5 Overall performance in the testing data sets of DS2 and INCART (The performances are expressed in percentages)

n v A Non-PVC PVC

Se +P Se +P

(a) DS2 N 45653 682 98.2 98.5 99.5 93.1 81.4

V 221 2992

(b) DS2 (un-preprocessed) N 45570 765 98.0 98.4 99.4 92.0 79.4

V 261 2952

(c) INCART N 146467 9414 94.0 94.0 99.1 93.4 66.5

V 1323 18688

N Non-PVC beats (true), V PVC beats (true), n non-PVC beats (recognized), v PVC beats (recognized), A accuracy, Se sensitivity, +P positive
predictivity

Table 6 Comparison between this study and [10,13,14,16]

Recordings Measuresa

A Non-PVC PVC

Se +P Se +P

Shyu [10] 111, 115, 116, 119, 221, 230, 231 97.0 − − 99.0 −
Our 98.0 98.0 100 99.7 66.0

Inan [13] 100, 101, 103, 105, 106, 109, 112, 113,
114, 115, 116, 118, 119, 121, 122, 123,
200, 201, 202, 203, 205, 208, 210, 212,
213, 214, 215, 219, 220, 221, 223, 228,
230, 231, 233, 234

− − − 76.5 85.8

Our 98.2 98.2 99.6 92.5 80.0

Lim [14] 115, 116, 119, 221,230, 231 99.8 − − 99.2 −
Our 99.7 99.7 100 99.6 79.0

Llamedo [16] All recordings of DS2 − − − 75.0 96.0

Our 98.2 98.5 99.5 93.1 81.4

Llamedo [16] All recordings from INCART − − − 82.0 88.0

Our 94.0 94.0 99.1 93.4 66.5

A Accuracy, Se sensitivity, +P positive predictivity
a The measures are expressed in percentages

The performance obtained in un-preprocessed DS2 data
set was slightly decreased, but it was still highly compa-
rable with that after a preprocessing procedure. It suggests

that our approach is fairly robust against noise. However,
template matching itself is prone to be affected by wave-
form distortion, so application in recordings with very low
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signal-to-noise ratio might not result in good performance.
For instance, the recordings 105, 108 and 121 have a very
low SNR, and the noise highly distorts the waveforms of non-
PVC beats. Consequently, low template-matching results for
non-PVC beats were obtained, leading to a very low +P for
PVC beats (see Table 4).

In comparison with these published approaches [10,
13,14,16] (Table 6), our PVC recognizer showed some
degree of improvement, especially in Se for PVC beats.
However, one limitation of this study is that +P for
PVC beats was not as good as other approaches. High
sensitivity of template matching to large waveform
distortions might be one dominant reason. However, our
additional analysis showed that the two template-matching
approaches could improve +P when compared with that
from one template-matching procedure alone (only T1, indi-
cating the QRS similarity) (81.4 % against 69.0 % for DS2)
without increasing the computational complexity. On the
premise of low computational complexity, there might still
be room for improvement. The timing features like RR inter-
val used in many published studies [6,9,12,13,16] might
help. Also, a more robust classification function needs to
be established if there is an increase in the amount of
inputs.

It is worth noting that we used the annotated fidu-
cial points in this study. But in order to fully automate
the recognition approach, an automated R-peak detection
module is required. Recently, great emphasis has already
been placed on R-peak detection, and a number of sim-
ple schemes have been reported [23–25]. Its error rate
is much lower than that of PVC detection. Thus, it is
strongly believed that automating the heartbeat detection
process would not necessarily degrade the PVC recognition
performance.

In conclusion, we have developed a low-complexity PVC
recognizer with good robustness against noise and gener-
alization capability. Its performance is highly comparable
to other state-of-the-art methods, showing good potential in
real-time application.
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