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This paper proposed a new entropy measure, Fuzzy Measure Entropy (FuzzyMEn), for the analysis of

heart rate variability (HRV) signals. FuzzyMEn was calculated based on the fuzzy set theory and

improved the poor statistical stability in the approximate entropy (ApEn) and sample entropy

(SampEn). The simulation results also demonstrated that the FuzzyMEn had better algorithm

discrimination ability when compared with the recently published fuzzy entropy (FuzzyEn), The

validity of FuzzyMEn was tested for clinical HRV analysis on 120 subjects (60 heart failure and 60

healthy control subjects). It is concluded that FuzzyMEn could be considered as a valid and reliable

method for a clinical HRV application.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The approximate entropy (ApEn) has been introduced as a
quantification of regularity in a time series. It was initially motivated
by being applied to the relatively short and noisy time series [1].
More frequently, it was used in the analysis of heart rate variability
(HRV) signals. It is derived from the computation of the correlation
integral. By maximizing the irregularity, the ApEn provided a
formulation for analyzing the complexity of a finite time series [2].
Because the calculation of ApEn is relatively easy, it has been widely
applied to clinical cardiovascular studies [1,3–10]. However, the
ApEn produces biased estimation for the complexity of physiological
signals with self-matching . To relieve this bias, Richman et al.
proposed another statistic, the sample entropy (SampEn) [11].

Either ApEn or SampEn has recently been proven that they both
have the poor statistical stability [12–15]. To explore the reasons for
the poor statistical stability of the traditional entropy measures
(ApEn and SampEn), researchers initially paid much attention to the
selection criterion of the threshold r, which was set to a constant of
0.2 times the standard deviation (SD) of the series. However, a
constant r¼0.2 was recently found to be problematic in the
similarity judgment, particularly for the fast dynamic series
[12,13]. Selection methods for the dynamic threshold have been
proposed to replace the constant r. For example, the threshold r
maximizing ApEn (rmax) was selected from 0.01 to 1.0 times the

SD of the series. Irrespective of using the constant r¼0.2 or the rmax,
the poor statistical stability in the ApEn and SampEn has not been
solved. The inherent reason for their poor statistical stability is that
the two entropy measures are based on the Heaviside function of
the classical sets, which is basically a two-state classifier that judges
two vectors as either ‘‘similar’’ or ‘‘dissimilar’’, with no intermediate
states. This hypothesis has been proven in the study by [14]. Similar
conclusions were also found in our recent study [15].

To overcome the poor statistical stability in the ApEn and SampEn,
Chen et al. [12,16] proposed a statistic named fuzzy entropy
(FuzzyEn), in which the Heaviside function was replaced by the
Zadeh fuzzy sets. Compared to the two-state classifier, the Zadeh
fuzzy sets provided a graduated similarity classifier and thus achieved
a better statistical stability than the ApEn and SampEn. One limitation
of the FuzzyEn is that it focuses only on the local characteristics of the
sequence. However, the global fluctuation in the large scales has been
widely found in the sequence. Therefore, it is important to test the
effect of the global fluctuation on the FuzzyEn.

This study aimed to develop an improvement method, the
fuzzy measure entropy (FuzzyMEn) for HRV analysis. The results
were compared with the traditional ApEn, SampEn and the recent
FuzzyEn, and its validity was tested on both simulation database
and clinical subjects.

2. Methods

2.1. Subjects

120 subjects aged between 18 and 75 participated in this
study. The clinical characteristics of the subjects are shown in
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Table 1. No subjects had taken medications or smoked cigarettes
before the test. The subjects generally fell into two groups – the
heart failure group and the healthy control group. Each group
contained 60 subjects. Prior to the test, each subject was given a
detailed description of the study objectives and the requirements
of the experiment. Informed consent was then read and
signed. Nobody had participated in any other ‘‘clinical trials’’
within the previous three months. The subjects in the healthy
control group had normal performances in the ultrasonic cardio-
gram (UCG), blood lipid and glucose checks and electrocardio-
gram (ECG). The subjects in the heart failure group were
consistent with Classes II–III of the New York Heart Association
(NYHA) Functional Classification and everyone had a left
ventricular ejection fraction (LVEF) value less than 50% in the
UCG detection. Those with severe organ damage or psychiatric
disorders were excluded. The study obtained the full ethical

approval from the Clinical Ethics Committee of the Qilu Hospitals
of Shandong University.

2.2. Data acquisition

The subjects were asked to lie down on a bed and maintain the
supine position during the test. Standard limb II–lead ECG data
were recorded for 10 min for each subject using the Cardiovas-
cular System Function Detecting Instrument (HUIYIRONGGONG,
China). ECG data were sampled at 1000 Hz and filtered through a
band-pass filter with a 0.05–125 Hz bandwidth. The R-wave
peaks of the ECG were detected using the Wavelet Transform
Modulus Maxima (WTMM) method described in [17,18]. The
adjacent R-wave peaks were used to calculate the RR interval
and then form the original RR sequence.

Each original RR sequence included several hundred RR inter-
vals and usually contained some anomalies caused by detector
errors or ectopic beats [19]. For detector-error caused anomalies,
a false beat caused by a low amplitude R-wave was defined as a
false negative (FN), and a false beat caused by noise masking was
a false positive (FP). The anomalies caused by ectopic beats were
classified into supra-ventricular ectopic beats (sVEB) and ventri-
cular ectopic beats (VEB), depending on the localization of the
ectopic focus. Fig. 1 shows the four types of anomalies mentioned
above, (a) an FN anomaly (b) an FP anomaly (c) a sVEB anomaly
and, (d) a VEB anomaly. Each upper panel in Fig. 1 shows a
segment of the ECG data for 8 s and the positions of the R-wave
peaks automatically detected by the WTMM method. Because the
anomalies exhibit a sharp transient in the original RR sequence
(see the lower panel in Fig. 1), they contaminated the real RR
sequence. Thus, it is necessary to correct the original RR sequence
prior to the HRV analysis. In this study, the anomalies were
identified using our recently-developed method [20], which
combined the advantages of the impulse rejection filter (IRF)
and the template-matching methods. The identified anomaly was
replaced with the mean values of the adjacent normal RR

Table 1
Statistics of the investigated subjects.

Statistics Heart failure

(N¼60)

Healthy control

(N¼60)

Total

(N¼120)

Sex (female/male)a 28/32 33/27 61/59

Age (year)a 57.479.7 54.9714.6 55.8716.3

Height (cm)a 164.675.9 167.179.3 165.5711.2

Mass (Kg)a 63.478.4 68.8711.7 65.9713.9

BMI (Kg/m2)a 25.373.3 23.573.1 24.674.5

HR (beat/minute)a 66.179.8 65.277.3 65.6712.5

LVEF (%)b 4278 67713 53717

SBP (mmHg)a 107.0713.2 112.9712.9 109.3715.9

DBP (mmHg)a 75.579.4 73.778.8 74.8711.0

Note: Data are expressed as number (male/female) or mean7standard deviation.

Abbreviations: BMI: body mass index; HR: heart rate; LVEF: left ventricular

ejection fraction; SBP: systolic blood pressure; DBP: diastolic blood pressure.
a There is no significant difference between heart failure and healthy control groups.
b There is significant difference between heart failure and healthy control groups.
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Fig. 1. Four types of anomalies in the ECG, (a) FN anomaly, (b) FP anomaly, (c) sVEB anomaly, and (d) VEB anomaly.
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intervals. Each lower panel in Fig. 1 shows the original and
modified RR sequence.

2.3. Construction of the simulation database

The simulation database was composed of identically-
distributed random sequences, periodical sinusoidal sequences
and non-linear logistic sequences. All sequences had the length
N¼1000. The random sequences were generated by the normally-
distributed random number with the standard deviation (SD) of 1.
The sinusoidal sequences were low-frequency sine waves sharing
the same amplitudes with SD¼1, but with different oscillation
periods. The oscillation periods were 100, 50 and 20 points per
cycle respectively. Given the sampling rate of 1000 Hz, the
oscillation frequencies corresponded to f1¼10 Hz, f2¼20 Hz and
f3¼50 Hz. These sinusoidal sequences were simply named S1, S2

and S3 and were shown in Fig. 2.
The logistic sequence was considered an approved non-linear

chaotic sequence and generated by the following iteration function:

x nþ1ð Þ ¼o� xðnÞ � 1�xðnð ÞÞ, ð1Þ

where the initial value, x(0), is in the range from 0.1 to 0.9 and o is a
constant parameter that determines the complexity of the sequence.
As o increased, the complexity of the sequence increased. Here, o
used the values of 3.6, 3.8 and 3.9, respectively, and the correspond-
ing logistic sequences were recorded as L1, L2 and L3.

2.4. Comparison of ApEn, SampEn, FuzzyEn and FuzzyMEn

In this study, four types of entropy measures were compared,
ApEn [2,21], SampEn [11], FuzzyEn [16,22] and FuzzyMEn. The
detailed calculation process of the FuzzyMEn is given in the
Appendix A. Their relationships and differences were investigated
through an in-depth theoretical analysis following a simulation test.

ApEn and SampEn usually exhibit a poor statistical stability,
because the absolute two-state classifier of the Heaviside function
is used and the selection of the threshold r is experience-based
[16,22]. The similarity of a sequence segment X(i) to another X(j)

is decided as follows:

yðdij,rÞ ¼
1 dijrr � sX

0 dij4r � sX
,

(
ð2Þ

where dij denotes the distance between the two sequence seg-
ments X(i) and X(j). The Heaviside function is essentially a two-
state classifier, as shown in Fig. 3. Only the sequence segments
within the boundary (dijrr�sX) are treated equally, while those
outside the boundary (dij4r�sX) are neglected. This rigid two-
state classifier property leads to instability in the similarity
judgments of the sequence segments and poor statistical stability
of the ApEn and SampEn.

The above limitation could be improved using Zadeh’s concept
of fuzzy sets theory [23], which provides a new measurement
according to the ‘‘membership degree’’ that could be a gauge of
the classifier. Using the fuzzy function mX, the conventional two-
state classifier was replaced with a continuous membership
degree between 0 and 1. The nearer the value of mX to 1, the
higher is the membership degree of the sequence segment to the
given class. This new evaluation protocol for the two sequence
segments X(i) and X(j) can be symbolized as:

XðiÞ,XðjÞ ��!
mX Xðið Þ,XðjÞÞ

½0,1� ð3Þ

In the FuzzyEn and FuzzyMEn, the above fuzzy sets theory was
used to measure the similarity degree. Similar to [16], an
exponential function exp(�(dij/r)n) was used as the fuzzy func-
tion in this study. As shown in Fig. 3, the exponential function
offers the smoothness and continuity for different values of r and
there is no rigid boundary.

By setting the embedding dimension m¼2 and the threshold
r¼0.19, 0.20 and 0.21, both the Heaviside and exponential
functions were used to calculate the similarity degree of the
sequence segments X(m) and X(n) to X(i) (see Fig. 4). The
similarity degrees after using the Heaviside function are as
follows: if r was 0.19, they were between 0 and 0; with r¼0.20
and 0.21, they changed to 0 and 1, 1 and 1, respectively. A sharp
change was observed with increased r. However, the similarity
degree with the exponential function changed relatively slowly

Fig. 2. Three sinusoidal sequences with the same oscillation amplitude and

different oscillation frequency, (a) S1 (10 Hz), (b) S2 (20 Hz), and (c) S3 (50 Hz).

Fig. 3. The functions of similarity judgment for different sequence segments: the

Heaviside function (broken line) and exponential function (real line). If the

threshold r changes slightly around the edge of the Heaviside function, the results

will be opposite. But the exponential function can avoid this problem.
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with increased r. They were between 0.34 and 0.28 (r¼0.19), 0.40
and 0.34 (r¼0.20), 0.45 and 0.40 (r¼0.21). Therefore, the FuzzyEn
and FuzzyMEn could perform continuous results with an expo-
nential function.

Despite the same theoretical foundation, the distinctions
between the FuzzyEn and FuzzyMEn still exist. The FuzzyEn
focuses only on the local characteristics of the sequence, without
considering any global characteristics of the sequence. From the
four example sequence segments X(i), X(m), X(n) and X(j) given in
Fig. 5, a high-level similarity could be obtained using the FuzzyEn.
However, the global fluctuations in the large scales have not been
considered, such as the fluctuation between X(i) and X(m), and
between X(i) and X(n). If both the local and global characteristics
are considered, X(j) is more similar to X(i) than the other two
segments. Our novel FuzzyMEn integrated both local and global
characteristics and could reflect the entire complexity in a time
series.

2.5. Consistency analysis of ApEn, SampEn, FuzzyEn and FuzzyMEn

Let a denote a parameter of the given entropy measure
algorithm. Given two time series, X and Y, then the algorithm
consistency is defined as follows: if there is an a0Aa, inducing the
complexity of X is higher than Y, that is, AlgorithmX(a0)4Algor-

ithmY(a0), then for all akAa, AlgorithmX(ak)4AlgorithmY(ak) will
be true. This shows that the algorithm has a fine consistency.

This can be generalized in the following equation:

3 a0Aa if AlgorithmX a0ð Þ4AlgorithmY a0ð Þ

) 8akAa AlgorithmX akð Þ4AlgorithmY akð Þ ð4Þ

Sinusoidal sequences S1, S2 and S3 were used for the test of
consistency in this study.

2.6. Discrimination ability analysis of the FuzzyEn and FuzzyMEn

Let a denote a parameter of the given entropy measure
algorithm. Given n sequences X1, X2, y, Xn, whose complexities
increase orderly, if Eq. (5) will be true for all akAa, this demon-
strates that the algorithm has a fine discrimination ability.

Algorithmak
X1ð ÞoAlgorithmak

X2ð Þo � � �oAlgorithmak
Xnð Þ ð5Þ

Logistic sequences L1, L2 and L3 were used for the test of
discrimination ability in this study. Significant differences in the
complexity of the logistic sequences L1, L2 and L3 have been
generally accepted. To construct a more exquisite sequence with a
slightly different complexity, we add each L1, L2 and L3 with the
random sequence (denoted as R) and sinusoidal sequence S1. R

and S1 have the same amplitude. The logistic sequences were
extended as follows:

Lij ¼ LiþAj � S1þRð Þ ð6Þ

where Li (i¼1, 2, 3) denotes the original logistic sequences; Aj

(j¼1, 2, 3) denotes the amplitude ratio between the sinusoidal
and logistic sequence. In this study, Aj was set to be 0, 0.05 and
0.1, respectively. Fig. 6 shows the nine sequences L11, L12, L13, L21,
L22, L23, L31, L32 and L33 generated from Eq. (6). These nine
sequences fell into three groups according to the original
sequence Li. The complexities of the extended sequences
satisfy the following conditions, L11oL12oL13, L21oL22oL23,
and L31oL32oL33.

2.7. Statistical analysis

All statistical analyses were performed using the Statistical
Package for Social Sciences (V16, SPSS Inc., Chicago, IL, USA). Normal
distribution and variance homogeneity tests were used for the
assessment of different entropy measures between normal and
heart failure groups. If the entropy measures passed the tests, the
Independent Sample t-test was performed. If not, the Wilcoxon rank
sum test was used. A box plot was then used to summarize the data
in graphic form. All statistical results were considered as statistically
significant for p-values of less than 0.05.

Fig. 4. The comparison of similarity degrees of sequence segments X(m) and X(n) to the given X(i) when the r changes, (a) r¼0.19, (b) r¼0.20, and (c) r¼0.21.

Fig. 5. The similarity of sequence segments both in local and global characteristics

of a HRV sequence. The sequence segment X(j) is similar to the given X(i) both in

local and global characteristics, while the sequence segment X(m) and X(n) present

obvious distinctions in global characteristic.
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3. Results

3.1. Consistency of the ApEn, SampEn, FuzzyEn and FuzzyMEn

The three sinusoidal sequences S1, S2 and S3 used to test the
consistency of the four entropy measures are given in Fig. 2. From
S1 to S3, the oscillation frequency became large; the complexities
of these three sequences were therefore different. The trends of
the different entropy measures with r increasing from 0 to 1 are
shown in Fig. 7. It can be clearly seen that the FuzzyEn and
FuzzyMEn exhibited a better consistency compared to the ApEn
and SampEn. If r was large enough, the ApEn and SampEn could
exhibit the differences in the three sinusoidal sequences, but not
when r fell below a certain value. The ApEn and SampEn could
change abruptly with a small change of r, thus they had a poor
consistency. However, no similar effects were found when using
the FuzzyEn and FuzzyMEn. Therefore, the FuzzyEn and Fuzzy-
MEn performed better in terms of smoothness and continuity
with an increasing r.

3.2. Discrimination ability of the FuzzyEn and FuzzyMEn

The trends of the FuzzyEn and FuzzyMEn with r increasing
from 0 to 0.4 are shown in Fig. 8. Each group of extended
sequences showed an increased complexity, but the trend lines
are blind in the groups analyzed using the FuzzyEn. In contrast,
the trend lines in the FuzzyMEn groups was discerned sepa-
rately. Therefore, in comparison with the FuzzyEn, FuzzyMEn
performs better in the discrimination ability in the complexity
differences.

3.3. HRV analysis using the ApEn, SampEn, FuzzyEn and FuzzyMEn

After applying the ApEn, SampEn, FuzzyEn and FuzzyMEn to
the RR sequences of the heart failure and healthy control groups,
the results of entropy measures are shown in Table 2. The two
groups did not exhibit significant differences using the ApEn
(p¼0.394), SampEn (p¼0.288) and FuzzyEn (p¼0.053), but a
significant difference was found when the FuzzyMEn (p¼0.032)
was used . The fuzzy-based entropy measures, particularly the
FuzzyMEn, performed better in the classification between the
heart failure and the healthy control subjects.

The box plots of four entropy measures are shown in Fig. 9.
The difference in the two groups in the FuzzyMEn was relative
larger than those in the other three entropies. It was noted that
the distribution ranges of the different entropy measures in the
heart failure group are larger than those in the healthy control
group. One reason may be that the course of the heart failure is
often accompanied by fatal arrhythmias, such as supra-
ventricular ectopic beats, ventricular ectopic beats and even,
ventricular fibrillation or atrial fibrillation. This can cause the
acute fluctuations in the RR sequences. In addition, the RR
sequence of the heart failure subject without arrhythmia had a
regular change caused by the weakening of the regulatory func-
tions of the autonomic nervous system. A more definite explana-
tion will require physiological research in future to investigate
the actual mechanisms.

4. Discussion and conclusion

In this study, a new entropy measure, named the FuzzyMEn,
has been proposed for HRV analysis. It has been confirmed that

Fig. 6. Examples of nine sequences obtained from Eq. (6). Figures are listed as, (a1) L11, (a2) L12, (a3) L13, (b1) L21, (b2) L22, (b3) L23, (c1) L31, (c2) L32, and (c3) L33.
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Fig. 7. Consistency of four entropy measures showing the trends with r increases from 0 to 1, (a) ApEn, (b) SampEn, (c) FuzzyEn, and (d) FuzzyMEn.

Fig. 8. Discrimination ability of FuzzyEn and FuzzyMEn showing the trends with r increases from 0 to 0.4. The results of FuzzyEn were showed in (a1)–(a3) while the

results of FuzzyMEn were showed in (b1)–(b3).

Table 2
The results of ApEn, SampEn, FuzzyEn and FuzzyMEn between the heart failure and healthy control groups.

Entropy measures Heart failure group Healthy control group p-values

Mean Maximum Minimum SD Mean Maximum Minimum SD

ApEn 1.043 1.247 0.218 0.241 1.107 1.305 0.689 0.202 0.394

SampEn 0.869 1.026 0.459 0.216 0.797 0.936 0.433 0.188 0.288

FuzzyEn 0.976 1.173 0.687 0.187 1.052 1.218 0.775 0.190 0.053

FuzzyMEn 1.941 2.103 1.552 0.170 2.038 2.329 1.851 0.158 0.032

SD: Standard Deviations.
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the HRV analysis is important in the early detection and quanti-
tative evaluation of cardiovascular diseases [6,8]. The ApEn
and SampEm are two popular entropy measures for the HRV
because of the ease of their calculations and the small data
requirements [11]. However, recent studies have found that
these two entropy measures have a poor statistical stability,
particularly in the analysis of the rapid physiological signals
[12,13]. In this study, we investigated the inherent reasons and
found that the two-state classifier property of the Heaviside
function is the main reason for the poor statistical stability in
the traditional entropy measures. Therefore, we applied the
concept of the fuzzy theory and used the membership degree of
the fuzzy function to describe the similarity of a given segment to
a given class. This judgment standard exhibited the gentle
boundary effect, and overcame the traditional rigid 0–1 judgment
standard [22].

Subsequently, we compared the FuzzyMEn with the FuzzyEn
algorithm. The FuzzyMEn employed both the fuzzy local measure
entropy and the fuzzy global measure entropy to reflect the local
and global characteristics. The entire simulation test confirmed
that, in comparison with the ApEn and SampEn, the FuzzyEn and
FuzzyMEn had a better consistency, and compared with the
FuzzyEn, the FuzzyMEn had better discrimination ability. The
detailed differences between the ApEn, SampEn, FuzzyEn and
FuzzyMEn are summarized in Table 3. The result achieved in this
study ensured confidence in researching the theoretical reason for
the poor statistical stability and, hence, leads to new ways for
exploring the inherent physiological mechanisms when using the
entropy measure.

Finally, the four entropy measures were compared by applying
them to the clinical HRV signals. The distribution ranges of the
different entropy measure in the heart failure group were also
larger than those in the healthy control group. This could mainly
be caused by fatal arrhythmias in the heart failure subjects [15].
The results also showed that the differences between the heart
failure and the healthy control groups were relative larger from
the FuzzyMEn than from the ApEn, SampEn or the FuzzyEn,
confirming that the FuzzyMEn had a better performance in
distinguishing the heart failure subjects from the healthy control
ones. This indicated that the FuzzyMEn could be an effective
method for the clinical HRV application.

5. Summary

It has been confirmed that heart rate variability (HRV) analysis
is important in the early detection and quantitative evaluation
of heart diseases and the entropy measures are important
methods for the HRV analysis. However, either the traditional
measures, such as Approximate Entropy (ApEn) and Sample
Entropy (SampEn) or the recent fuzzy entropy (FuzzyEn) must
be considered as validated before the clinical application. This
paper aimed to investigate the limitations of the entropy mea-
sures mentioned above and proposed a new entropy measure,
named the Fuzzy Measure Entropy (FuzzyMEn) for the clinical
HRV analysis.

Because the FuzzyMEn was constructed with the membership
degree of a fuzzy function instead of using the ‘0–1’ judgment of
the Heaviside function that is typically used in the ApEn and
SampEn, it improved the poor statistical stability of the ApEn and
SampEn. In addition, our novel FuzzyMEn employed both the
fuzzy local measure entropy and the fuzzy global measure
entropy to reflect the entire complexity in the time series. The
simulation results showed that, in comparison with the ApEn and
SampEn, the FuzzyEn and FuzzyMEn had a better consistency and,
compared with the FuzzyEn, the FuzzyMEn had better discrimi-
nation ability.

To test the clinical validity of the novel FuzzyMEn, 120
subjects were enrolled (60 heart failure patients and 60 normal
subjects). The statistical differences in the four different entropy
measures (ApEn, SampEn, FuzzyEn and FuzzyMEn) between the
heart failure and healthy control groups were analyzed. The
Independent Sample t-test results showed that the ApEn
(p¼0.394) and the SampEn (p¼0.288) had no statistical differ-
ences between the two groups, with the FuzzyEn (p¼0.053)
having a borderline result; while the FuzzyMEn (p¼0.032) had
a significant difference. This result showed that, compared to the
ApEn, SampEn and even FuzzyEn, the FuzzyMEn had a better
performance in distinguishing the heart failure subjects from the
healthy control subjects. This indicated that the FuzzyMEn could
be an effective method for the clinical HRV application.

Fig. 9. The distribution ranges of ApEn, SampEn, FuzzyEn and FuzzyMEn between

heart failure and healthy control groups. The symbol ‘‘*’’ means there is a

significant difference between heart failure and healthy control groups.

Table 3
The detailed differences of ApEn, SampEn, FuzzyEn and FuzzyMEn.

Difference aspects ApEn SampEn FuzzyEn FuzzyMEn

Sets theory classical classical fuzzy fuzzy

Judgment a sequence segment to a given class 0–1 judgment 0–1 judgment membership degree membership degree

Judgment function Heaviside function Heaviside function fuzzy function fuzzy function

Is self-matching calculated? yes no no no

Is a bias estimation? yes no no no

Description characteristic global global local local and global

Algorithm consistency relative poor relative poor relative fine relative fine

Algorithm discrimination ability relative poor relative poor relative moderate relative fine
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Appendix A. The calculation process of the fuzzy measure
entropy (FuzzyMEn)

The algorithm of the FuzzyMEn was inspired by the study of
Chen et al., in which the fuzzy sets were introduced to improve
the statistical stability. The detailed description for the FuzzyMEn
is shown as follows:

(1) Given a sequence X¼{x1, x2, y, xN}, the embedding dimen-
sion m is set to be a constant 2.0. In the following descrip-
tion, the sequence X is assumed as the RR sequence. Thus,
the element xi (i¼1,2,y,N) of sequence X is the RR interval,
with the unit of a millisecond (ms). Then, from the first
element of X, choose m consecutive x values to form a
sequence segment Xm(i)¼[xi, xiþ1, y, xiþm�1], where the i

is from 1 to N�mþ1. The total number of the sequence
segments is N�mþ1. The calculation process of the Fuzzy-
MEn excludes self-matches and considers only the first
N�m sequence segments. Let x0i denotes the mean value
of the sequence segment Xm(i).

(2) The local sequence segment XLm(i) is defined by removing
the mean of the sequence segment Xm(i) from the Xm(i), i.e.
XLm(i)¼[xi�x0i, xiþ1�x0i, y, xiþm-1�x0i]. The global
sequence segment XFm(i) is defined by removing the mean
of the entire sequence X from the Xm(i), that is,
XFm(i)¼[xi�xmean, xiþ1�xmean, y, xiþm-1�xmean], where
the xmean denotes the mean value of the sequence X. Then,
the distance of the local sequence segments between XLm(i)
and XLm(j) can be denoted as dLm(i, j); at the same time, the
distance of the global sequence segments between XFm(i)
and XFm(j) can be denoted as dFm(i, j). The dLm(i, j) and dFm(i,
j), also with the unit in ms, are calculated as follows:

(3) Then, the local fuzzy function mL(dLm(i,j),nL,rL) and global
fuzzy function mF(dFm(i,j),nF,rF) can be calculated as

mL dLm i,jð Þ,nL,rLÞ ¼ expð�ðdLm i,jð Þ=rLÞ
nL

� �
mF dFm i,jð Þ,nF ,rF Þ ¼ exp � dFm i,jð Þ=rF Þ

nF
� �

,
��

(
ðA2Þ

where, a typical exponential function is used for both the
local and global fuzzy functions. This is because that
exponential function can provide smoothness and continu-
ity for different thresholds. The rL and rF denote their
thresholds, respectively. In this study, the rL and rF were

set to be 0.2 times the SD of the sequences. The nL and nF are
their weights of sequence segments’ similarity. If nL or nF is
higher than 1, the similarity of the close sequence segments
will be weighted, but that of the far sequence segments will
be unweighted; if nL or nF is lower than 1, an inverse effect
performs. If nL or nF were large enough or close to infinity,
the exponential function in equation A3 will be reduced to
the Heaviside function. In this study, the nL and nF were set
to be 3 and 2. The local similarity degree DLm(i, j) between
XLm(i) and XLm(j) and the global similarity degree DFm(i, j)
between XFm(i) and XFm(j) can be calculated as follows:

DLmði,jÞ ¼ mLðdLmði,jÞ,nL,rLÞ ¼ expð�ðdLmði,jÞ=rLÞ
nL Þ

DFmði,jÞ ¼ mF ðdFmði,jÞ,nF ,rF Þ ¼ exp � dFm i,jð Þ=rF Þ
nF

� �
:

�
(

ðA3Þ

For all 1ri, jrN�m, the mean values of DLm(i, j) and DFm(i, j)
are described as jLm(nL,rL) and jFm(nF,rF) and can be calcu-
lated as follows:

fLm nL,rLð Þ ¼ 1
N�m

XN�m

i ¼ 1

1

N�m�1

XN�m

j ¼ 1,ja i

DLm i,jð Þ

0
@

1
A

fFm nF ,rFð Þ ¼ 1
N�m

XN�m

i ¼ 1

1

N�m�1

XN�m

j ¼ 1,ja i

DFm i,jð Þ

0
@

1
A
:

8>>>>>>><
>>>>>>>:

ðA4Þ

(4) Then XLmþ1(i) and XFmþ1(i) are constructed with a length to
mþ1. The steps from (1) to (3) should be repeated for the
calculation of fLmþ1(nL,rL) and fFmþ1(nF,rF).

(5) Then fuzzy local measure entropy FuzzyLMEn and the fuzzy
global measure entropy FuzzyFMEn are defined as follows:

FuzzyLMEn m,nL,rL,Nð Þ ¼ ln fLm nL,rLð Þ�ln fLmþ1 nL,rLð Þ

FuzzyFMEn m,nF ,rF ,Nð Þ ¼ ln fFm nF ,rFð Þ�ln fFmþ1 nF ,rFð Þ
:

(

ðA5Þ

Finally, the FuzzyMEn of the sequence X is calculated as
follows:

FuzzyMEn m,nL,rL,nF ,rF ,Nð Þ ¼ FuzzyLMEn m,nL,rL,Nð Þ

þFuzzyFMEn m,nF ,rF ,Nð Þ ðA6Þ
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