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Abstract
Approximate entropy (ApEn) is widely accepted as a complexity measure
of the heart rate variability (HRV) signal, but selecting the criteria for the
threshold value r is controversial. This paper aims to verify whether Chon’s
method of forecasting the rmax is an appropriate one for the HRV signal. The
standard limb lead ECG signals of 120 subjects were recorded for 10 min in a
supine position. The subjects were divided into two groups: the heart failure
(22 females and 38 males, median age 62.4 ± 12.6) and healthy control group
(33 females and 27 males, median age 51.5 ± 16.9). Three types of ApEn were
calculated: the ApEn0.2 using the recommended constant r = 0.2, the ApEnchon

using Chon’s method and the ApEnmax using the true rmax. A Wilcoxon rank
sum test showed that the ApEn0.2 (p = 0.267) and the ApEnmax (p = 0.813)
had no statistical differences between the two groups, while the ApEnchon

(p = 0.040) had. We generated a synthetic database to study the effect of two
influential factors (the signal length N and the ratio of short- and long-term
variability sd1/sd2) on the empirical formula in Chon’s method (Chon et al
2009 IEEE Eng. Med. Biol. Mag. 28 18–23). The results showed that the
empirical formula proposed by Chon et al is a good method for analyzing the
random signal, but not an appropriate tool for analyzing nonlinear signals, such
as the logistic or HRV signals.
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1. Introduction

Approximate entropy (ApEn), which provides a general measure of the regularity of time
series, is widely used for analyzing physiological series of clinical data (Pincus 1991, 1995).
The popularity of the ApEn stems from its capability in providing quantitative information
about the complexity of both short- and long-term data recordings that are often corrupted
with noise. The calculation methods are relatively easy and ApEn has been widely applied to
clinical cardiovascular studies (Pincus et al 1991, Pincus and Keefe 1992, Dawes et al 1992,
Fleisher et al 1993, Ho et al 1997, Makikallio et al 1998, Pincus 2001).

The ApEn examines the conditional probability of the inherent similarities in the time
series based on statistical analyses that appear to be compatible with the general clinical need
to distinguish healthy subjects from the abnormal ones (Pincus et al 1991). Series that are more
repetitive-in-time or with subsequences that are more similar have smaller ApEn values. The
calculation of ApEn requires, initially, selection of two unknown parameters: the embedding
dimension m and the threshold value r. The parameter m determines the subsequent lengths
to be compared; m = 2 (Pincus et al 1991, Pincus and Keefe 1992) is suggested or it can be
estimated by calculating the false nearest neighbor (Kennel et al 1992). The second parameter
r determines the threshold tolerance for accepting similar patterns between two subsequences
and should be in the range between 0.1 and 0.25 times the standard deviation of the time series
(Pincus et al 1991, Pincus and Keefe 1992). This recommendation was originally used to
analyze the relatively slow dynamic time series, such as the heart rate (Fleisher et al 1993, Ho
et al 1997, Hogue et al 1998), fetal heart rate (Dawes et al 1992, Leeuwen et al 2006) and
hormonal release data (Pincus et al 1999).

Recently, studies have reported that when the dynamic performance of the time series
becomes faster, the aforementioned r range may not be appropriate and thus can lead to
incorrect conclusions. The r value that maximizes the ApEn comes from Lu et al (2008)
and Chon et al (2009). Hereinafter, we denote the maximum of ApEn as ApEnmax and the
corresponding r value as rmax. It is a time-consuming process choosing the rmax from the
range 0.01 to 1.0 times the standard deviation of the time series. Instead of the computing
the ApEn for every r value, an empirical formula was proposed by Lu et al (2008) and Chon
et al (2009) for automatically selecting the r value to maximize the ApEn. Nevertheless, the
empirical formula, derived from the analysis of Gaussian white noise (WN) signals, was based
on the method derived from Monte Carlo simulations. Therefore, whether or not it is the most
suitable for the analysis of slow nonlinear time series, such as the heart rate variability (HRV)
signal, is open to question. Significant differences lie between the Gaussian WN signals and
the HRV signals. Castiglioni and Rienzo (2008) verified with data from 10 young healthy
volunteers that the rmax calculated by the empirical formula was not incompatible with the
traditionally recommended r range and that the choice of r was critical, especially in the HRV
studies.

Regardless of how m is chosen—by adopting the recommended value or calculating the
false nearest neighbor—m is usually to be chosen as 2 or 3, which slightly affects the analytical
results of the ApEn. However, r often imposes an obvious influence on the analytical results
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of the ApEn and the influence becomes even more apparent when the dynamics of the time
series are uncertain. The purpose of this paper is to verify whether or not the empirical formula
for computing rmax given by Chon et al (2009) is appropriate for the nonlinear HRV signal
analysis. Unlike Castiglioni and Rienzo’s 2008 study, we increased the number of subjects
from 10 to 120, while adding the comparison between heart failure and healthy control groups,
to obtain more accurate conclusions.

2. Methods

2.1. Subjects

The subjects enrolled in this study, either in the heart failure or the healthy control groups,
should, (i) be aged between 18 and 75 years old, (ii) agree to sign the information consent
form, and (iii) not have participated in any other ‘clinical trials’ within the previous 3 months.

Individually, the heart failure group must be in accord with classes II–III of the New
York Heart Association (NYHA) Functional Classification and have an LVEF<0.50 with an
ultrasonic cardiogram (UCG) detection.

The individual requirements for the healthy control group are that (i) half the group should
be older than 50 years, and (ii) they should have normal results with a UCG, blood lipid and
glucose checks and electrocardiogram (ECG).

Subjects with severe organ damage or subjects with psychiatric disorders will be excluded.
In accordance with the above conditions, 120 subjects were enrolled and were divided

into two groups: (i) the heart failure group (22 females and 38 males, median age 62.4 years;
range, 38–75 years), and (ii) the healthy control group (33 females and 27 males; median age,
51.5 years; range, 24–72 years). Each group contained 60 subjects. The study had the full
approval of the Clinical Ethics Committee of the Qilu Hospitals of Shandong University.

2.2. Data acquisition

All subjects were selected to ensure that they did not take medications or smoke cigarettes
before the test. At the beginning, every subject was asked to lie on the bed and relax over a
period of time. Subsequently, standard limb II lead ECG data were recorded for about 10 min
for each subject, using the cardiovascular system function detecting instrument. The ECG
data were sampled at 1000 Hz. Each subject was in the supine position during the recording.

After the data acquisition, the ECG data were filtered through a band-pass filter with its
pass-band frequency being set at 0.05–125 Hz. Then, the R-wave peaks of the ECG data were
automatically detected by the wavelet transform modulus maxima (WTMM) method (Li et al
1995, Martinez et al 2004), which was an important method for describing the characteristic
elements of a complex quasi-periodic signal based on wavelet transform. The fore-and-aft
R-wave peaks formed the R-R interval and the consecutive R-R intervals made up of the
original RR sequence.

The original RR sequence often contains two kinds of anomalies: those caused by detector
errors and anomalies caused by ectopic beats (Mateo and Laguna 2003). For detector-error
caused anomalies, a false beat brought about by a low amplitude R-wave is the usually called
a false negative (FN); and the false beat caused by noise masking is a false positive (FP). The
anomalies caused by ectopic beats are usually classified into supra-ventricular ectopic beats
(sVEB) and ventricular ectopic beats (VEB), depending on the localization of the ectopic
focus. Distinct ECG morphological differences exist between these two categories. Usually,
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Figure 1. Four different kinds of anomalies in the ECG: (a) FN anomaly, (b) FP anomaly, (c)
sVEB anomaly, (d) VEB anomaly.

the morphology features of the sVEB are similar to those of a normal beat, but the VEB has
an increased amplitude at the position of the ectopic beat.

Figure 1 shows the four different kinds of anomalies mentioned above: (a) FN anomaly,
(b) FP anomaly, (c) sVEB anomaly, and (d) VEB anomaly. Each figure shows a segment of
an ECG trace lasting 8 s and the positions of the R-wave peaks automatically detected by the
WTMM method in the upper panel. Because these anomalies exhibit a sharp transient in the
original RR sequence (see the lower panel of figure 1) that contaminates the real RR sequence,
it is necessary to correct the original RR sequence prior to the HRV analysis. In this study, we
used the IRF introduced by McNames et al (2004) to correct the anomalies in the original RR
sequence. In the lower panel of figure 1, the original and modified RR sequences are shown.
After correction, sharp transient in the original RR sequence has been removed.

2.3. Chon’s method for calculating rmax

Recent studies have reported that the ApEnmax may reflect the complexity of the physiological
signal accurately. The ApEnmax is usually calculated by linearly increasing r within the range
0.01–0.8 with an increment of 0.01. However, it is a time-consuming process when choosing
the rmax. Based on the analysis of Gaussian white noise (WN) signals, Lu et al (2008) and
Chon et al (2009) proposed an empirical formula for automatically selecting the rmax, which
is expressed as follows:

rchon = (−0.036 + 0.26
√

sd1/sd2)/
4
√

N/1000, (1)

where N denotes the length of the RR sequence, and sd1 and sd2, respectively, are the measure
of the short-term and long-term variability of the RR sequence. For an RR sequence, x(n) =
{x(1), x(2),. . ., x(N)}, let y(n) be the difference sequence of x(n), that is, y(n) = {x(2)−x(1),
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x(3)−x(2),. . ., x(N)−x(N−1)}, then sd1 is the standard deviation of y(n), and sd2 is the standard
deviation of x(n).

2.4. Definition of different approximate entropies

ApEn was introduced as a quantification of the regularity in the time series, initially motivated
by the applications to relatively short, noisy time series. ApEn was derived from the
computation of the correlation integral. Developments were made for approximating Markov
chains (Pincus 1992). By maximizing the irregularity, it provided a formulation for a finite time
series (Pincus and Singer 1996). The elaborate calculation process for the ApEn algorithm
can be found from the works of Pincus et al (1991) or Hornero et al (2005).

In this study, three types of ApEn are discussed according to the different selection criteria
of r: ApEn0.2 using the recommended constant r = 0.2, ApEnchon using the estimated rmax

by Chon’s method and ApEnmax using the true rmax. The true rmax is found by searching
the r values to maximize the ApEn in the range of 0.01–0.8 times the standard deviation of
the signal, incrementing by 0.01. Before the calculation of ApEn, each RR sequence of all the
120 subjects is intercepted to be 500 points in length, and the embedding dimension m is set
to be 2.

2.5. Statistical analysis

To compare different types of ApEn between the heart failure and healthy control groups, we
use the statistical analysis software of SPSS to analyze calculated results. First, we carried out
the normal distribution and variance homogeneity test for the indices between the two groups.
If positive results were obtained in the normal distribution and variance homogeneity test, we
move on to independent sample t-test. If the indices did not pass the tests, we turned to the
Wilcoxon rank sum test. p = 0.05 was taken as the level of statistical significance for all tests.

3. Results

3.1. Comparison of ApEn and r values calculated using different methods

Four indices of descriptive statistics, the mean, minimum, maximum and standard deviation
(SD) are analyzed and shown in table 1. Each measure was separately calculated between
the heart failure and healthy control groups. After the normal distribution and variance
homogeneity test, the resulting p-values of the Wilcoxon rank sum test are also reported in
table 1. A value of p < 0.05 is deemed statistically significant. The p-values of ApEn0.2,
ApEnchon and ApEnmax are 0.267, 0.040 and 0.813, respectively. While ApEn0.2 and ApEnmax

do not exhibit statistical significances between the two groups, ApEnchon behaves significantly
differently. The expressive difference of ApEnchon between the two groups mainly arose from
rchon. Therefore, the estimated rchon can more significantly distinguish the two groups than the
rmax in table 1.

Recent studies showed that the maximum value of ApEn (that is, ApEnmax) is likely to
behave better than the other values when depicting the complexity of the physiological signals
(Chon et al 2009, Lu et al 2008). Thus, according to this argument, the ApEnmax in table 1 is
supposed to be more representative than the ApEnchon and ApEn0.2 in reflecting the inherent
complexity of the RR sequence between the heart failure and healthy control groups. Usually,
the inherent complexity of the healthy control group is considered higher than that of the
heart failure group. However, the results of the Wilcoxon rank sum test show that there is
no statistical difference between the two groups in ApEnmax. Similar results also occur with
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Table 1. Descriptive statistics of ApEn and r values, the p-values measure the separation between
the heart failure and healthy control groups.

Heart failure group Healthy control group

Measures Mean Minimum Maximum SD Mean Minimum Maximum SD p-values

ApEn values
ApEn0.2 1.085 0.130 1.375 0.203 1.118 0.731 1.302 0.113 0.267
ApEnchon 1.082 0.093 1.378 0.255 1.156 0.823 1.318 0.105 0.040
ApEnmax 1.174 0.812 1.414 0.138 1.178 0.904 1.332 0.087 0.813

r values
rchon 0.289 0.131 0.431 0.071 0.253 0.129 0.386 0.056 0.004
rmax 0.209 0.026 0.612 0.100 0.231 0.091 0.364 0.057 0.158

Table 2. Descriptive statistics of sd1, sd2 and sd1/sd2 between the heart failure and healthy control
groups.

Heart failure group Healthy control group

Measures Mean Minimum Maximum SD Mean Minimum Maximum SD p-values

sd1 (ms) 40.634 1.992 346.940 67.125 29.871 5.002 29.804 23.701 0.254
sd2 (ms) 36.500 1.616 242.632 46.069 36.041 8.335 36.001 19.655 0.938
sd1/sd2 0.947 0.329 1.838 0.380 0.799 0.263 1.587 0.283 0.017

ApEn0.2. Therefore, ApEnmax and ApEn0.2 do not approve this argumentation. Surprisingly,
ApEnchon is statistically different between the two groups. The reason should to be investigated
and the key might lie in the empirical formula (1).

3.2. Analysis of sd1 and sd2 for two groups

For each RR sequence of all 120 subjects, we calculate the short-term variability sd1 and
long-term variability sd2 used in the empirical formula (1). The RR sequence is set to be
the uniform length N = 500. The statistic results are shown in table 2. Compared with
the healthy control group, the heart failure group has a similar sd2 but a fairly large sd1.
Therefore, sd1/sd2 becomes larger in the heart failure group than in the other group. The
boxplots of sd1, sd2 and sd1/sd2 are shown in figure 2. In figure 2, we can clearly discern that
the distribution range of sd1 in the heart failure group varies more intensively than that in the
healthy control group. The psychopathological explanation is that the course of heart failure
is often accompanied by fatal arrhythmias, such as supra-ventricular ectopic beats, ventricular
ectopic beats, and even ventricular fibrillation or atrial fibrillation. This can cause the acute
fluctuations in RR sequence. So sd1 will become large. Sometimes, the RR sequence of the
heart failure subject without arrhythmia has a small range due to the weakening of regulatory
functions of the autonomic nervous system. So sd1 will become low. The huge range of sd1 is
the essential reason why sd1/sd2 exhibits a significant difference between the two groups and
the resulting significant difference in rchon and ApEnchon. In the next section, we will discuss
the influential factors for the empirical formula (1), that is, we explore the influential factors
for rchon.
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(a) (b)

Figure 2. The boxplots of sd1, sd2 and sd1/sd2 between heart failure and healthy control groups:
(a) sd1 and sd2, (b) sd1/sd2.

3.3. Influential factors analysis for rchon

3.3.1. Construction of the emulation database. In the empirical formula (1), there are two
influential factors, N, sd1/sd2. To determine whether or not each of the factors separately
affects rchon, we carried out experiments with an emulation database composed of random
sequences and logistic sequences. The random sequences were generated by the normally
distributed random number with the standard deviation 1 and named from R1 to R100. Each
of the random sequences has a length of 1000. To eliminate random factors, the ApEn is
the average of all ApEn values from 100 sequences. The logistic sequence is considered an
approved nonlinear chaotic sequence. In the present project, we use sequences generated by
the following iteration function:

x(n + 1) = ω ∗ x(n) ∗ (1 − x(n)), (2)

where the initial value x(0) is in the range from 0.1 to 0.9. ω, and is a constant parameter that
determines the complexity of the sequence. As ω increases, the complexity of the sequence
increases. Herein, ω took the value of 3.6, 3.8 and 3.9, and the corresponding logistic
sequences were recorded as L1, L2 and L3. To eliminate the effect of the random factors, 90
samples were produced with L1, L2 and L3, and the mean of each sample was used to compute
the ApEn. These 90 samples were produced as follows: x(0) in formula (2) was taken as 0.1,
0.2, . . ., 0.9 in turn, with an increment of 0.1. Corresponding to each x(0), a logistic sequence
with the length N = 54 000 was produced, and then the logistic sequence was divided up into
nine sequence fragments with a length of N = 6000. The last 1000 points of each sequence
fragment was chosen as a sample. Thus, 90 samples were formed in total.
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(a) (b)

(d)(c)

Figure 3. The trend of ApEn with r, including the random sequence and logistic sequence: (a)
random sequence, (b) L1 sequence, (c) L2 sequence, and (d) L3 sequence.

3.3.2. How N affects rchon. Figure 3 shows the trend of ApEn with r when N varies. There
are four sequences, including the random sequence, L1, L2 and L3. The original sequence has
a length of 1000 and, on this basis, is truncated to 800, 600, 400, and 200 points, respectively.
The range of r is 0.01–0.8 times the standard deviation of the sequence, with an increment of
0.01. The r corresponding to the ApEnmax is defined as rmax. The contrasted of random and
logistic sequence can be found when the variation of rmax is different from the variation of the
sequence length N. The rmax in the random sequence has a regular variation with the change
of N. If N becomes larger, the corresponding rmax is smaller. This phenomenon is consistent
with the empirical formula (1). However, for the logistic sequence, rmax does not show the
orderliness and ApEnmax does not show a distinct single peak as a random sequence. ApEnmax

in the logistic sequence maintains a largish value in a wide range of r, especially for L2 and
L3. It is very difficult and impractical to forecast the rmax using the empirical formula.

We assume that the sd1/sd2 in the empirical formula (1) is a constant 1.5; thus the
empirical formula (1) becomes a single-variable function reflecting the relation between rmax

(that is, rchon) and N. The function curve of rmax(N) forecasted by the empirical formula (1)
is shown in figure 4 with the black curve. Figure 4 also shows the rmax(N) of the sequences.
Because the curves of ApEn (r) in figure 3 are not very smooth, it is not convincing to select
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(a) (b)

Figure 4. The variable relation of rmax and N in the empirical formula (1) and the emulation
database; rmax is calculated by setting the glide-window p. (a) p = 3. (b) p = 5.

the r corresponding to the maximum of the ApEn(r) as the rmax. We use a glide-mean method
to search rmax and build a function as follows:

ApEnmax(r) =
∑

ApEn(r + 0.01 ∗ m) |m| � (p − 1)/2, (3)

where p is the length of the glide window, r is in the range of 0.01∗(p/2+0.5) and 0.8–0.01
∗(p/2–0.5). The r maximizing the ApEnmax(r) is defined as rmax. The results corresponding
to p = 3 and p = 5 are shown in figures 4(a) and (b), respectively. With the increase of
the sequence length N, the rmax of the random sequence maintains a consistent trend with the
empirical formula (1), but for the logistic sequence, especially when the sequence complexity
increases (ω = 3.8 and ω = 3.9), the rmax does not show the trend in the empirical formula (1).
In addition, as the glide-window p changes, the rmax shows some saltation even though with
the same N, which indicates that the variable relation of rmax and N in the empirical formula
(1) is open to question.

3.3.3. How sd1 and sd2 affect rchon. Figure 5 shows the boxplots of sd1 and sd2 in random
and L3 sequences, in which the random sequences include 100 samples and the L3 sequences
include 90 samples. It can be found that in either the random or L3 sequences, with sequence
length N increasing, the fluctuant ranges of sd1 and sd2 become smaller and behaves more
stable. Besides, compared with the other N, the fluctuant ranges of sd1 and sd2 reaches
maximum with N = 200, indicating that the stability using the sequence with N = 200 to
predict the rmax is fallacious and the ApEnmax on this basis has little credibility.

To discuss the single-variable relationship between the rmax and sd1/sd2, we set N a fixed
number of 600. We add each random and L3 sequence with a low-frequency sine wave sharing
the same oscillation period but different amplitudes. The oscillation period is 100 points per
cycle. The oscillation amplitude is set to be A times the magnitude of x(n). A is set to be 0, 0.1,
0.2, 0.3, 0.4 and 0.5, respectively. Figure 6 shows two samples respectively from the random
and L3 sequences, on which low-frequency sine waves added. A is respectively 0, 0.1, 0.2,
0.3, 0.4 and 0.5 from top to bottom. Because of the low-frequency nature of the oscillation,
the short-term variability sd1 has only slight variation, whereas the long-term variability sd2

changes more significantly. This is shown in figure 7. The sd1 remains essentially unchanged,
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(a) (b)
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Figure 5. The boxplots of sd1 and sd2 in the random and L3 sequences: (a) sd1 in random
sequences, (b) sd2 in random sequences, (c) sd1 in L3 sequences, (d) sd2 in L3 sequences.

but with the increase of oscillation amplitude in the sine wave, the fluctuation range of sequence
becomes larger, so the sd2 significantly increases.

Based on the above analysis, the sd1/sd2 will change when A increases. It is reasonable
that the rmax will also change according to the empirical formula (1). We calculate the different
rmax values in the random and L3 sequences corresponding to the different sd1/sd2. Each rmax

in the random and L3 sequences is calculated with the average of all the samples. The
trends of rmax with sd1/sd2 increasing are shown in figure 8. For comparison, we also depict
the sd1/sd2–rmax curve by the empirical formula (1). Herein, N is set to 600. Similar to
section 3.3.2, we also use the glide-mean method to search rmax. The glide-window p also be
set to p = 3 and p = 5.

Figure 8 shows that the results of the random sequence are coincident with the empirical
formula (1); but for the nonlinear sequence, the test and prediction results differ observably.
The trends of the test and prediction results are contrary rather than being consistent. With
the sd1/sd2 increasing, rmax decreased in the test, but by contrast, it is supposed to increase
according to the empirical formula (1). This proves once again that using the empirical
formula (1) to forecast the rmax for nonlinear sequence is not accurate, as aforementioned.
Because similar to the logistic sequences, the physiological signals, such as the HRV signal,
are generally recognized as nonlinear signals.
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(a) (b)

Figure 6. Illustrational samples from the random and L3 sequences added with a low-frequency
sine wave: (a) random sequences, (b) L3 sequences.

(b)(a)

Figure 7. The clustered boxplots of sd1 and sd2 in random and L3 sequences: (a) random
sequences, (b) L3 sequences.
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(a) (b)

Figure 8. The variable relation of rmax and sd1/sd2 in estimated equation (1) and emulation
database; rmax is calculated by the formula (3) by setting the glide-window p. (a) p = 3. (b) p = 5.

4. Discussion

Since Pincus proposed the ApEn algorithm in 1991, ApEn has been applied to many
physiological signal analyses as a measure of signal complexity. The typical applications
include the heart rate (Fleisher et al 1993, Makikallio et al 1998, Gonçalves et al 2008), fetal
heart rate (Dawes et al 1992, Leeuwen et al 2006, Gonçalves et al 2007), hormone pulsatility
(Pincus and Keefe 1992, Pincus et al 1999), EEG (Abásolo et al 2005, Bruhn et al 2000).
However, the validity of ApEn is clearly affected by the pre-established threshold value r. Over
the past ten years, researchers usually directly use the recommended r in the range between
0.1 and 0.25 times of the standard deviation of the time series. Recently, some researchers
point out that the recommended r does not fit all situations and may lead to the wrong results,
especially when the signal becomes fast. The use of the r value that maximizes the ApEn
(ApEnmax) is proposed instead of taking a fixed r. The hypothesis is that the ApEnmax is able to
reflect the true complexity of the different physiological signals more clearly. Unfortunately,
the procedure to search for rmax is computationally expensive. Chon et al (2009) propose an
empirical formula to forecast the rmax based on the statistical analysis of random signals. Their
work makes that it is an easy method to obtain the rmax using the empirical formula (1) and
then to calculate the ApEnmax (ApEnchon).

In this study, we intend to investigate whether Chon’s method is appropriate for HRV
signal analysis. One hundred twenty subjects were enrolled and were divided into two groups:
the heart failure and healthy control groups. We calculated three types of ApEn: ApEn0.2

using the recommended constant r = 0.2, ApEnchon using Chon’s method and ApEnmax using
the rmax. Then we analyzed the statistical difference of different ApEn values between the
heart failure and healthy control groups using the Wilcoxon rank sum test. We also analyzed
the statistical difference of the estimated rmax (rchon) and true rmax. The Wilcoxon rank sum
test showed that ApEn0.2 (p = 0.267) and ApEnmax (p = 0.813) had no statistical difference
between the two groups, while ApEnchon (p = 0.040) had. Similar situations occurred in
the rchon (p = 0.004) and rmax (p = 0.158). If ApEnmax reflects the true complexity of the
physiological signals more accurately, the statistical difference of ApEnmax between the heart
failure and healthy control groups should be more significant than that of any other ApEn
measures. But the results do not support this viewpoint. The secret is likely to be concealed
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in the differences between rchon and rmax. Thus, the process of calculating the rchon should to
be explored, and the validity using the empirical formula to forecast the rmax is dubitable.

We used the emulation database to analyze two influence factors for rchon, the signal
length N and the ratio of short- and long-term variability, sd1/sd2. Disparate results were
obtained from the random and logistic sequence. When we fixed the sd1/sd2 as a constant,
we obtained the conclusion that with N increasing, the true rmax was almost like the estimated
rchon in the random sequence but not in the logistic sequence. The rmax in the logistic sequence
did not justify the orderliness forecasted by the empirical formula (1). When N was fixed
as a constant and sd1/sd2 increased, the trends of true rmax were found well coincident with
the empirical formula in the random sequence, but not in the logistic sequence. The rmax

in the logistic sequence that exhibited an essentially disaccord with the estimated rchon, even
became contrary. In conclusion, prudence should be exercised when estimating rmax using
the empirical formula. The reason maybe was that Chon’s empirical formula was built on the
analysis of the random signal, and the HRV signal was essentially a nonlinear signal. Thus,
the validity of the empirical formula to analyze the HRV signal needed to be discussed.

It has been confirmed that HRV analysis has an important effect for the early detection and
quantitative evaluation of cardiovascular diseases. The accurate analysis methods for HRV are
the premise to the effective clinical practices. This paper carefully compared different criteria
proposed by other researchers for selecting threshold values r for ApEn. ApEn is advised to
be used with caution because different threshold values r could affect the analysis results, and
even educe the opposite conclusion. To search for methods to weaken the influence from the
different threshold values r in ApEn computation is among the list of our future work.
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